首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Evans IR  Wood W 《Fly》2011,5(2):110-114
Drosophila embryonic hemocytes have emerged as a potent system to analyze the roles of key regulators of the actin and microtubule cytoskeletons live and in an in vivo context (see Table I and references therein). The relative ease with which live imaging can be used to visualize the invasive migrations of these highly motile macrophages and their responses to wound and chemoattractant signals make them a particularly appropriate and genetically tractable cell type to study in relation to pathological conditions such as cancer metastasis and inflammation. ( 1-3) In order to understand how signaling pathways are integrated for a coordinated response, a question with direct relevance to autoimmune dysfunction, we have sought to more fully characterize the inputs these cells receive in vivo over the course of their developmental dispersal. These studies have recently revealed that hemocyte migration is intimately associated with the development of the ventral nerve cord (VNC), a structure used by hemocytes to disperse over the embryo that itself requires this association for its correct morphogenesis. Crucially the VNC must separate from the epidermis to create a channel for hemocyte migration, revealing how constriction of extracellular space can be used to control cell migration in vivo. ( 4).  相似文献   

2.
Vascular endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF) family members are essential and evolutionary conserved determinants of blood cell development and dispersal. In addition, VEGFs are integral to vascular growth and permeability with detrimental contributions to ischemic diseases and metastatic cancers. The PDGF/VEGF-receptor related (Pvr) protein is implicated in the migration and trophic maintenance of macrophage-like hemocytes in Drosophila melanogaster embryos. pvr mutants have a depleted hemocyte population and a breakdown in hemocyte distribution. Previous studies suggested redundant functions for the Pvr ligands, Pvf2 and Pvf3 in the regulation of hemocyte migration, proliferation, and size. However, the precise roles that Pvf2 and Pvf3 play in hematopoiesis remain unclear due to the lack of available mutants. To determine Pvf2 and Pvf3 functions in vivo, we generated a genomic deletion that simultaneously disrupts Pvf2 and Pvf3. From our studies, we identified contributions of Pvf2 and Pvf3 to the Pvr trophic maintenance of hemocytes. Furthermore, we uncovered a novel role for Pvfs in invasive migrations. We showed that Pvf2 and Pvf3 are not required for the directed migration of hemocytes, but act locally in epithelial cells to coordinate trans-epithelial migration of hemocytes. Our findings redefine Pvf roles in hemocyte migration and highlight novel Pvf roles in hemocyte invasive migration. These new parallels between the Pvr and PDGF/VEGF pathways extend the utility of the Drosophila embryonic system to dissect physiological and pathological roles of PDGF/VEGF-like growth factors.  相似文献   

3.
The dampwood termite, Zootermopsis angusticollis is known to generate humoral immune responses to the entomopathogenic fungus Metarhizium anisopliae. However, little is known about how the termite's cellular immune system reacts to fungal infection. To test the effect of conidia exposure on cellular immunity, we quantified the number and types of hemocytes in the hemolymph of naïve nymphs and compared their circulating counts with those of nestmates exposed to 0, 2 × 103, 2 × 106 or 2 × 108 conidia/ml doses. These termites were then bled and their hemocytes counted on days 1, 2, 3, 4, 7 post-exposure. Our results show, first, that naïve Z. angusticollis nymphs have three different blood cell types tentatively identified as granular hemocytes, prohemocytes and plasmatocytes. In these individuals, plasmatocytes were on average 13.5 and 3.3 times more numerous than granular hemocytes and prohemocytes, respectively. Second, a full factorial general linear analysis indicated that hemocyte type, time elapsed since conidia exposure and conidia dosage as well as all their interactions explained 43% of the variability in hemocyte density. The numbers of prohemocytes and particularly plasmatocytes, but not granular hemocytes, appear to be affected by the progression of disease. The decline in hemocyte numbers coincided with the appearance of hyphal bodies and the onset of “sluggish” termite behavior that culminated in the insect's death. Hemocyte counts of infected males and females were affected to the same extent. Hence, M. anisopliae overtakes the cellular immune responses of Z. angusticollis mainly by destroying the host's most abundant hemocyte types.  相似文献   

4.
Condensation is a process whereby a tissue undergoes a coordinated decrease in size and increase in cellular density during development. Although it occurs in many developmental contexts, the mechanisms underlying this process are largely unknown. Here, we investigate condensation in the embryonic Drosophila ventral nerve cord (VNC). Two major events coincide with condensation during embryogenesis: the deposition of extracellular matrix by hemocytes, and the onset of central nervous system activity. We find that preventing hemocyte migration by removing the function of the Drosophila VEGF receptor homologue, Pvr, or by disrupting Rac1 function in these cells, inhibits condensation. In the absence of hemocytes migrating adjacent to the developing VNC, the extracellular matrix components Collagen IV, Viking and Peroxidasin are not deposited around this tissue. Blocking neural activity by targeted expression of tetanus toxin light chain or an inwardly rectifying potassium channel also inhibits condensation. We find that disrupting Rac1 function in either glia or neurons, including those located in the nerve cord, causes a similar phenotype. Our data suggest that condensation of the VNC during Drosophila embryogenesis depends on both hemocyte-deposited extracellular matrix and neural activity, and allow us to propose a mechanism whereby these processes work together to shape the developing central nervous system.  相似文献   

5.
In bivalve molluscs, defence against pathogens mainly relies on fast tissue infiltration by immunocompetent hemocytes that migrate from circulating hemolymph to sites of infection, in order to deliver, in situ, an effective immune response. In the present work, we have investigated dynamics of hemocyte subpopulations motility by combining flow cytometry coupled to Coulter-type cell volume determination, Hoffman modulation contrast microscopy, time-lapse imaging and off-line analysis of cell shape changes. Our results revealed fast modifications of hemocyte aspect in vitro, with bidirectional transitions from spread outlines to condensed cell body morphologies, in the minute range. Amoeboid or non-amoeboid types of locomotion were observed, depending on the cell shapes and on the cell subtypes, with velocities reaching up to 30 μm min?1. Correlations between motion profiles, Hemacolor staining and flow cytometry analysis on living cells help to propose a functional mussel hemocyte classification including the motile properties of these cells. In particular, basophils were shown to be involved in dynamic hemocyte–hemocyte interactions and in the constitution of aggregation cores. Physiological implications, in terms of immune response in organisms devoid of endothelium-closed vascular system, and potential applications of hemocyte motility studies for the development and the interpretation of experiments involving hemocytes in the field of marine ecotoxicology are discussed.  相似文献   

6.
Hemocytes constitute the key element of innate immunity in bivalves, being responsible for secretion of antimicrobial peptides and release of zymogens from the prophenoloxidase system within the hemolymph compartment, reactive oxygen species production and phagocytosis. Hemocytes are found (and collected) as cells in suspension in circulating hemolymph. Hemocytes are adherent cells as well, infiltrating tissues and migrating to infected areas. In the present study, we applied an approach based on fluorescent staining and nuclei-tracking to determine migration velocity of hemocytes from the blue mussel, Mytilus edulis, in culture. Freshly collected hemocytes attached to substrate and start to move spontaneously in few minutes. Two main hemocyte morphologies can be observed: small star-shaped cells which were less motile and spread granular cells with faster migrations. Cell-tracking was combined to MTT mitochondria metabolic rate measurements in order to monitor global cell population activity over 4 days of culture. A transient peak of cell activity was recorded after 24–48 h of culture, corresponding to a speed up of cell migration. Videomicroscopy and cell tracking techniques provide new tools to characterize activity of mussel immunocytes in culture. Our analysis of hemocyte migration reveals that motility is very sensitive to cell environmental factors.  相似文献   

7.
8.
Hemocyte migration toward infection and wound sites is an essential component of insect defense reactions, although the biochemical signal mechanisms responsible for mediating migration in insect cells are not well understood. Here we report on the outcomes of experiments designed to test the hypotheses that (1) insect hemocytes are able to detect and migrate toward a source of N-formyl-Met-Leu-Phe (fMLP), the major chemotactic peptide from Escherichia coli and (2) that pharmaceutical modulation of eicosanoid biosynthesis inhibits hemocyte migration. We used primary hemocyte cultures prepared from fifth-instar tobacco hornworms, Manduca sexta in Boyden chambers to assess hemocyte migration toward buffer (negative control) and toward buffer amended with fMLP (positive control). Approximately 42% of negative control hemocytes migrated toward buffer and about 64% of positive control hemocytes migrated toward fMLP. Hemocyte migration was inhibited (by >40%) by treating hornworms with pharmaceutical modulators of cycloxygenase (COX), lipoxygenase and phospholipase A2 (PLA2) before preparing primary hemocyte cultures. The influence of the COX inhibitor, indomethacin, and the glucocorticoid, dexamethasone, which leads to inhibition of PLA2, was expressed in a dose-dependent way. The influence of dexamethasone was reversed by injecting arachidonic acid (precursor to eicosanoid biosynthesis) into hornworms before preparing primary hemocyte cultures. The saturated fatty acid, palmitic acid, did not reverse the inhibitor effect. These findings support both our hypotheses, first that insect hemocytes can detect and respond to fMLP, and second, that insect hemocyte migration is mediated by eicosanoids.  相似文献   

9.
Stofanko M  Kwon SY  Badenhorst P 《Genetics》2008,180(1):253-267
In Drosophila, defense against foreign pathogens is mediated by an effective innate immune system, the cellular arm of which is composed of circulating hemocytes that engulf bacteria and encapsulate larger foreign particles. Three hemocyte types occur: plasmatocytes, crystal cells, and lamellocytes. The most abundant larval hemocyte type is the plasmatocyte, which is responsible for phagocytosis and is present either in circulation or in adherent sessile domains under the larval cuticle. The mechanisms controlling differentiation of plasmatocytes and their migration toward these sessile compartments are unclear. To address these questions we have conducted a misexpression screen using the plasmatocyte-expressed GAL4 driver Peroxidasin-GAL4 (Pxn-GAL4) and existing enhancer-promoter (EP) and EP yellow (EY) transposon libraries to systematically misexpress approximately 20% of Drosophila genes in larval hemocytes. The Pxn-GAL4 strain also contains a UAS-GFP reporter enabling hemocyte phenotypes to be visualized in the semitransparent larvae. Among 3412 insertions screened we uncovered 101 candidate hemocyte regulators. Some of these are known to control hemocyte development, but the majority either have no characterized function or are proteins of known function not previously implicated in hemocyte development. We have further analyzed three candidate genes for changes in hemocyte morphology, cell-cell adhesion properties, phagocytosis activity, and melanotic tumor formation.  相似文献   

10.
In mussel (Mytilus sp.) hemocytes, differential functional responses to injection with different types of live and heat-killed Vibrio species have been recently demonstrated.In this work, responses of Mytilus hemocytes to heat-killed Vibrio splendidus LGP32 and the mechanisms involved were investigated in vitro and the results were compared with those obtained with Vibrio anguillarum (ATCC 19264). Adhesion of hemocytes after incubation with bacteria was evaluated by flow cytometry: both total hemocyte counts (THC) and percentage of hemocyte sub-populations were determined in non-adherent cells. Functional parameters such as lysosomal membrane stability, lysozyme release, extracellular ROS production and NO production were evaluated, as well as the phosphorylation state of the stress-activated p38 MAPK and PKC. Neither Vibrio affected total hemocyte adhesion, while both induced similar lysosomal destabilization and NO production. However, V. splendidus decreased adhesion of large granulocytes, induced rapid and persistent lysozyme release and stimulated extracellular ROS production: these effects were associated with persistent activation of p38 MAPK and PKC. In contrast, V. anguillarum decreased adhesion of large semigranular hemocytes and increased that of hyalinocytes, had no effect on the extracellular ROS production, and induced significantly lower lysozyme release and phosphorylation of p-38 MAPK and PKC than V. splendidus. These data reinforced the existence of specific interactions between mussel hemocytes and V. splendidus LGP32 and suggest that this Vibrio strain affects bivalve hemocytes through disregulation of immune signaling. The results support the hypothesis that responses of bivalve hemocytes to different bacterial stimuli may depend not only on the nature of the stimulus, but also on the cell subtype, thus leading to differential activation of signaling components.  相似文献   

11.
The cellular arm of the insect immune response is mediated by the activity of hemocytes. While hemocytes have been well-characterized morphologically and functionally in model insects, few studies have characterized the hemocytes of non-model insects. Further, the role of ontogeny in mediating immune response is not well understood in non-model invertebrate systems. The goals of the current study were to (1) determine the effects of caterpillar size (and age) on hemocyte density in naïve caterpillars and caterpillars challenged with non-pathogenic bacteria, and (2) characterize the hemocyte activity and diversity of cell types present in two forest caterpillars: Euclea delphinii and Lithacodes fasciola (Limacodidae). We found that although early and late instar (small and large size, respectively) naïve caterpillars had similar constitutive hemocyte densities in both species, late instar Lithacodes caterpillars injected with non-pathogenic E. coli produced more than a twofold greater density of hemocytes than those in early instars. We also found that both caterpillar species contained plasmatocytes, granulocytes and oenocytoids, all of which are found in other lepidopteran species, but lacked spherulocytes. Granulocytes and plasmatocytes were found to be strongly phagocytic in both species, but granulocytes exhibited a higher phagocytic activity than plasmatocytes. Our results strongly suggest that for at least one measure of immunological response, the production of hemocytes in response to infection, response magnitudes can increase over ontogeny. While the underlying raison d’ être for this improvement remains unclear, these findings may be useful in explaining natural patterns of stage-dependent parasitism and pathogen infection.  相似文献   

12.
The presence of a lectin in association with hemocytes of the American oyster, Crassostrea virginica, has been demonstrated by utilizing a microhemagglutination assay. The plasma membrane association of this lectin is shown by its copurification with the plasma membrane fraction of disrupted hemocytes, using sucrose density gradient centrifugation, and also by the binding of 125I-labeled glycoproteins to intact hemocytes at 4°C. Based upon agglutinating spcificity for a range of vertebrate erythrocytes, both untreated and enzyme-treated, along with hemagglutination-inhibition assays and crossed-absorption tests, it is apparent that there are also two serum (soluble) lectins, each having a distinct serological agglutination specificity, and that the hemocyte membrane-associated lectin has a specificity that is identical with one of these two serum lectins. It is proposed that the hemocyte membrane-associated lectin may be a true integral membrane protein, and therefore may function as a membrane receptor in nonself recognition by molluscan hemocytes.  相似文献   

13.
The injection of live Bacillus thuringiensis (with the culture medium) into the hemocoel of male adults of Locusta migratoria results in a significant fall of the number of circulating hemocytes followed 2 days later by a sharp increase of the hemocyte figure. Identical doses of washed live bacteria have the same effect on the hemogram, whereas neither culture medium deprived of the bacteria by filtration nor heatkilled bacteria modify the hemocyte number. Injection of isolated β-exotoxin of B. thuringiensis in nonlethal concentrations remain without effect on the hemogram.Morphological studies show that the injected bacteria are essentially taken up by the reticular (phagocytic) cells of the hemocytopoietic tissue, leading to a necrotic evolution of many of these cells. Necrotic zones are rapidly encapsulated by granular hemocytes.One to two days after the injection, the hemocytopoietic tissue shows signs of considerable hypertrophy: both the polymorphous reticular cells and the maturing blood clusters become notably more numerous.The modifications observed in the hemocytopoietic tissue partly explain the alterations of the hemogram after injection of B. thuringiensis.  相似文献   

14.
Hemocytes are key players in the immune response against pathogens in insects. However, the hemocyte types and their functions in the white-spotted flower chafers, Protaetia brevitarsis seulensis (Kolbe), are not known. In this study, we used various microscopes, molecular probes, and flow cytometric analyses to characterize the hemocytes in P. brevitarsis seulensis. The circulating hemocytes were classified based on their size, morphology, and dye-staining properties into six types, including granulocytes, plasmatocytes, oenocytoids, spherulocytes, prohemocytes, and adipohemocytes. The percentages of circulating hemocyte types were as follows: 13% granulocytes, 20% plasmatocytes, 1% oenocytoids, 5% spherulocytes, 17% prohemocytes, and 44% adipohemocytes. Next, we identified the professional phagocytes, granulocytes, which mediate encapsulation and phagocytosis of pathogens. The granulocytes were immunologically or morphologically activated and phagocytosed potentially hazardous substances in vivo. In addition, we showed that the phagocytosis by granulocytes is associated with autophagy, and that the activation of autophagy could be an efficient way to eliminate pathogens in this system. We also observed a high accumulation of autophagic vacuoles in activated granulocytes, which altered their shape and led to autophagic cell death. Finally, the granulocytes underwent mitotic division thus maintaining their number in vivo.  相似文献   

15.
Drosophila melanogaster hemocytes are highly motile macrophage-like cells that undergo a stereotypic pattern of migration to populate the whole embryo by late embryogenesis. We demonstrate that the migratory patterns of hemocytes at the embryonic ventral midline are orchestrated by chemotactic signals from the PDGF/VEGF ligands Pvf2 and -3 and that these directed migrations occur independently of phosphoinositide 3-kinase (PI3K) signaling. In contrast, using both laser ablation and a novel wounding assay that allows localized treatment with inhibitory drugs, we show that PI3K is essential for hemocyte chemotaxis toward wounds and that Pvf signals and PDGF/VEGF receptor expression are not required for this rapid chemotactic response. Our results demonstrate that at least two separate mechanisms operate in D. melanogaster embryos to direct hemocyte migration and show that although PI3K is crucial for hemocytes to sense a chemotactic gradient from a wound, it is not required to sense the growth factor signals that coordinate their developmental migrations along the ventral midline during embryogenesis.  相似文献   

16.
Improved methods of cell culture from eye stalk, hepatopancreas, muscle, ovary, and hemocytes of shrimp (Penaeus vannamei) were established using synthetic media and shrimp muscle extract (SME). For hemocytes and ovarian cell cultures, Grace’s insect medium supplemented with 10% (v/v) fetal bovine serum and 10% SME (v/v) showed enhanced attachment and proliferation of the cells. The hemocyte and ovarian cell cultures could be maintained for 48 and 66 days, respectively, and have been sub-cultured four and six times, respectively. Both ovary and hemocyte cell cultures contained primarily epithelial-like cells. Cells derived from ovary tissue grew preferably between 26°C and 28°C with 5% CO2. Although the temperature preference of hemocyte cells was the same as ovarian cells, CO2 supplementation did not show any difference in the growth of hemocyte cells. When the shrimp were injected with lipopolysaccharide (8 μg/g of shrimp) and hemolymph was drawn 24 h post-injection, the in vitro multiplicity of hemocytes dramatically improved. The growth of eye stalk, hepatopancreas, and muscle-derived cells was much less compared to ovarian cells and hemocytes under the conditions described above. The optimal culture conditions for ovarian cells and hemocytes were also different from that for eye stalk, hepatopancreas, and muscle cell culture. The proliferation efficiencies of primary cultures of hepatopancreas, eyestalk, and muscle cells were about 30, 12, and <7 d, respectively. The improved culture conditions described here, particularly for hemocytes and ovary, will be very useful for in vitro studies involving viruses infecting shrimp and in shrimp genomic studies.  相似文献   

17.
On the hypothesis that prostaglandins and other eicosanoids mediate nodulation responses to bacterial infections in insects, we describe an intracellular phospholipase A2 (PLA2) in homogenates prepared from hemocytes collected from the tobacco hornworm, Manduca sexta. PLA2 hydrolyzes fatty acids from the sn-2 position of phospholipids. Some PLA2s are thought to be the first and rate-limiting step in biosynthesis of prostaglandins and other eicosanoids. The hemocyte PLA2 activity was sensitive to hemocyte homogenate protein concentration (up to 250 μg protein/reaction), pH (optimal activity at pH 8.0), and the presence of a Ca2+ chelator. Like PLA2s from mammalian sources, the hemocyte PLA2 was inhibited by the phospholipid analog oleyoxyethyl phosphorylcholine. Whereas most intracellular PLA2s require Ca2+ for catalytic activity, some PLA2s, including the hemocyte enzyme, are Ca2+-independent. The hemocyte PLA2 exhibited a preference for arachidonyl-associated substrate over palmitoyl-associated substrate. These findings show that M. sexta hemocytes express a PLA2 that shows a marked preference for hydrolyzing arachidonic acid from phospholipids. The biological significance of this enzyme relates to cellular immune responses to bacterial infections. The hemocyte PLA2 may be the first biochemical step in synthesis of the eicosanoids that mediate cellular immunity in insects. © 1996 Wiley-Liss, Inc.  相似文献   

18.
比较了几种常见血细胞培养基(L-15、2×L-15、3×L-15、M199和RMPI-1640)对中华绒螯蟹(Eriocheir sinensis)血细胞原代培养中细胞形态以及存活率的影响,以及在筛选获得的最佳培养基中添加不同比例胎牛血清(FBS)(0%、5%、10%和15%),进一步观察了血清对中华绒螯蟹血细胞培养效果的比较。结果表明,3×L-15培养基培养效果较好,所培养的细胞形态相对完整,数量较多,培养至96 h时血细胞存活率仍大于60%;而其他4种培养基效果较差,培养12 h存活率均低于50%,且细胞形态结构变化明显。以3×L-15培养基为基础,添加不同比例胎牛血清后发现,对细胞存活有显著影响,存活率明显降低。因此,不添加血清的3×L-15培养基对中华绒螯蟹血细胞的生长较为适宜。  相似文献   

19.
Maintenance of hemocyte populations is critical for both development and immune responses. In insects, the maintenance of hemocyte populations is regulated by mitotic division of circulating hemocytes and by discharge from hematopoietic organs. We found cell clusters in the hemolymph of Mamestra brassicae larvae that are composed of small, spherical cells. Microscopic observations revealed that the cells in these clusters are similar to immature or precursor cells present in hematopoietic organs. The results of bromodeoxyuridine (BrdU) incorporation experiments demonstrate that these cells are mitotically active. Furthermore, these cells maintain their immature state and proliferate until late in the last larval instar. The results of in vitro experiments showed that most of the cells changed their morphology to one consistent with plasmatocytes or granulocytes, and that the change was promoted by addition of larval hemolymph to the culture medium, in particular when hemolymph was collected at a prepupal stage. Taken together, our results suggested that cells in clusters may be an additional source of hemocytes during larval development.  相似文献   

20.
The morphological features of the hemocytes of the crustacean Ligia exotica are similar to hemocytes of insects and millipedes. Jones system of hemocyte classification is extended to crustacean hemocytes. As in insects, seven classes of hemocytes, identified as prohemocytes, plasmatocytes, granular hemocytes, cystocytes, oenocytoids, spherule cells and adipohemocytes, occur. The prohemocytes can be subdivided into five categories that probably represent the precursor of major cell types. The structural and chemical features of other major cell classes are distinct and support the concept of Jones ('62) that these types might have different lineages and might not be capable of transforming into one another. Some of the prohemocytes, plasmatocytes and granular hemocytes are amoeboid. Cystocytes do not bring about any visible plasma coagulation similar to their counterpart in millipedes. Oneocytoids and adipohemocytes are rare. Plasmatocytes, cystocytes and oenocytoids occur in conglomerates, the significance of which is discussed. The cell types are compared with those of the hemocytes of other crustaceans. It is suggested that the nomenclature based on morphological characters is more suited for crustacean hemocytes than a nomenclature based on behavioural and physiological characters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号