首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
P53 family members with a transactivation domain induce cell cycle arrest and promoteapoptosis. However, ΔNp63 isotypes lacking the transactivation (TA)- domain promote cellproliferation and tumorigenesis in vitro and in vivo. Although p53, TAp63 or TAp73 are stabilizedupon DNA damage, we found that the genotoxic stress agents induced a dramatic decrease andphosphorylation of ΔNp63α in squamous cell carcinoma cells. Further work revealed that RACK1physically associated with the p63α C-terminal domain through its WD40 domain. However,stratifin binds with phosphorylated ΔNp63α in response to cisplatin. Upon DNA damage inducedby cisplatin, stratifin mediated a nuclear export of ΔNp63α into cytoplasm and then RACK1targeted latter into a proteasome degradation pathway possibly serving as an E3 ubiquitin ligase.Moreover, siRNA knockdown of both stratifin and RACK1 inhibited a nuclear export and proteindegradation of ΔNp63α, respectively. Our data suggest that modification and down regulation ofΔNp63α is one of the major determinants of the cellular response to DNA damage in human headand neck cancers.  相似文献   

4.
Genetic polymorphisms in some DNA repair proteins are associated with a number of malignant transformations like head and neck squamous cell carcinoma (HNSCC). Xeroderma pigmentosum group D (XPD) and X-ray repair cross-complementing proteins 1 (XRCC1) and 3 (XRCC3) genes are involved in DNA repair and were found to be associated with HNSCC in numerous studies. To establish our overall understanding of possible relationships between DNA repair gene polymorphisms and development of HNSCC, we surveyed the literature on epidemiological studies that assessed potential associations with HNSCC risk in terms of gene–environment interactions, genotype-induced functional defects in enzyme activity and/or protein expression, and the influence of ethnic origin on these associations. We conclude that large, well-designed studies of common polymorphisms in DNA repair genes are needed. Such studies may benefit from analysis of multiple genes or polymorphisms and from the consideration of relevant exposures that may influence the likelihood of HNSCC when DNA repair capacity is reduced.  相似文献   

5.
Head and neck squamous cell carcinoma (HNSCC) is a malignancy with a worldwide distribution. Although intensive studies have been made, the underlying oncogenic mechanism of HNSCC requires further investigation. In this study, we examined the oncogenic role of activated Cdc42-associated kinase 1 (ACK1), an oncogenic tyrosine kinase, in regulating the proliferation of HNSCC cells and its underlying molecular mechanism. Results from immunohistochemical studies revealed that ACK1 was highly expressed in HNSCC tumors, with 77% (77/100) of tumors showing a high ACK1 immunoreactivity compared to 40% (8/20) of normal mucosa. Knockdown of ACK1 expression in HNSCC cells resulted in elevated p27 expression, reduced cell proliferation, and G1-phase cell cycle arrest. Rescue of ACK1 expression in the ACK1-knockdown cells suppressed p27 expression and restored cell proliferation. Compared to ACK1-knockdown cells, ACK1-rescued cells exhibited a restored p27 expression after MG132 treatment and showed an elevated level of ubiquitinated p27. Our data further showed that knockdown of ubiquitin ligase Skp2 resulted in elevated p27 expression. Importantly, the expression of p27(WT), p27(Y74F), or p27(Y89F) in ACK1-overexpressed 293T cells or ACK1-rescued SAS cells showed higher levels of tyrosyl-phosphorylated p27 and interaction with ACK1 or Skp2. However, the expression of p27(Y88F) mutant exhibited a relatively low phosphorylation level and barely bound with ACK1 or Skp2, showing a basal interaction as the control cells. These results suggested that ACK1 is highly expressed in HNSCC tumors and functions to promote cell proliferation by the phosphorylation and degradation of p27 in the Skp2-mediated mechanism.  相似文献   

6.
7.
8.
The heparin-binding growth factor, MK, promoting tumorigenesis and survival was found to associate with α6β1 integrins. We showed for the first time that MK interacted with TSPAN1 and facilitated the association between TSPAN1 and integrin α6β1 proteins in head and neck squamous cell carcinoma (HNSCC) cells. We found that MK mediated an integrin-dependent tyrosine phosphorylation of FAK and activation of paxillin and Stat1α pathways. As result, downstream target genes implicated in cell migration and invasiveness (e.g. MMP-2 and MMP-26) were overexpressed. We observed that RNAi silencing of the critical signaling intermediates led to decrease of MK-induced migration/invasiveness of HNSCC cells. The major finding of this study is a novel MK-triggered signaling mechanism implicated in migration and invasiveness of HNSCC cells.  相似文献   

9.
Tumour necrosis factor (TNF) is known to induce apoptosis, but recently, TNF was shown to promote cell survival, a process regulated by phosphatidylinositol-3-OH kinase (PI3K) and the NFkappaB pathway. In this study, we investigated the relationship between the molecules implicated in regulating TNF-induced cell survival and apoptosis induced by TNF in a human head and neck squamous cell carcinoma cell line (SAS), with special reference to the Akt pathway, one of the pathways related to cell survival. In SAS cells, TNF induced the phosphorylation of Akt at both Ser473 and Thr308, causing the activation of Akt, and also induced the phosphorylation and degradation of IkappaB (inhibitor of NFkappaB). This phosphorylation and degradation was inhibited by pretreating the cells with the PI3K inhibitors, wortmannin or LY294002. The apoptosis of SAS cells induced by TNF was dependent on the concentration: a high concentration of TNF, but not a low concentration, induced apoptosis within 30 h. However, a low concentration of TNF in the presence of wortmannin or LY294002 induced apoptosis. Furthermore, expression of the kinase-negative form of Akt, IKKalpha or IKKbeta, and the undegradable mutant of IkappaB, also induced apoptosis at low concentrations of TNF. When the SAS cells expressed constitutively activated Akt, apoptosis was not induced, even by high concentrations of TNF. These observations suggest that, in the SAS cell line, the PI3K-NFkappaB pathway contributes to TNF-induced cell survival and that inhibition of this pathway accelerates apoptosis.  相似文献   

10.
Until recently, tumor progression has been considered a multistep process defined by tumor cell mutations and the importance of the surrounding stroma poorly understood. It is now recognized that matrix-degrading enzymes that promote tumor cell invasion are elaborated by both tumor cells and fibroblasts in vivo. To determine the relative role of tumor cell-derived proteases compared with fibroblast-derived proteases, coculture experiments were done with each cell type using an in vitro model of type I collagen degradation. Head and neck squamous cell carcinoma cells in coculture with normal dermal fibroblasts showed matrix degradation, but neither cell type alone produced this effect. Manipulating the in vitro coculture environment showed that collagenolysis in this model was a result of fibroblast-derived matrix metalloproteases (MMP). To explore the possible role of extracellular matrix metalloprotease inducer (EMMPRIN) in this interaction, transfection of EMMPRIN into a cell line with low endogenous EMMPRIN expression was done and showed a significant increase in collagenolysis. Inhibition of collagenolysis with a tissue inhibitor of metalloprotease-2 (TIMP-2) and a synthetic furin inhibitor was observed but not with TIMP-1, which suggested a possible role for membrane type-1 MMP. These results suggest that fibroblast-derived MMPs but not those from tumor cells are important for in vitro collagenolysis and that this process is promoted by tumor cell-expressed EMMPRIN.  相似文献   

11.
Patients with advanced head and neck squamous cell carcinomas (HNSCCs) are often treated with concomitant chemotherapy and radiotherapy, but only 50% is cured. A possible explanation for treatment failure is therapy resistance of the cancer stem cells (CSCs). The application of compounds specifically targeting these CSCs, in addition to routinely used therapeutics, would likely improve clinical outcome. We demonstrate that the previously described monoclonal antibody K984 recognizes the CD98 cell surface protein, which is specifically expressed by cells forming the squamous basal cell layer, the region where the squamous stem cells reside. Moreover, CD98 is highly resistant to the proteolytic enzymes required for CSC enrichment procedures. We show that CD98high cells, in contrast to CD98low cells, are able to generate tumors in immunodeficient mice, indicating that CD98high cells have stem cell characteristics. Furthermore, the CD98high subpopulation expresses high levels of cell cycle control and DNA repair genes, while the CD98low fraction shows expression patterns that represent the more differentiated cells forming the bulk of the tumor. CD98 is a promising CSC enrichment marker in HNSCC. Our data support the CSC concept in head and neck cancer and the potential relevance of these cells for treatment outcome.  相似文献   

12.
The suppressor of zest 12 (SUZ12), one of the core polycomb repressive complex 2 (PRC2) components, has increasingly appreciated as a key mediator during human tumorigenesis. However, its expression pattern and oncogenic roles in head and neck squamous cell carcinoma (HNSCC) remain largely unexplored yet. Here, we sought to determine its expression pattern, clinicopathological significance and biological roles in HNSCC. Through data mining and interrogation from multiple publicly available databases, our bioinformatics analyses revealed that SUZ12 mRNA was significantly overexpressed in multiple HNSCC patient cohorts. Moreover, SUZ12 protein was markedly up‐regulated in primary HNSCC samples from our patient cohort as assessed by immunohistochemical staining and its overexpression significantly associated with cervical node metastasis and reduced overall and disease‐free survival. In the 4‐nitroquinoline 1‐oxide (4NQO)‐induced HNSCC mouse model, increased SUZ12 immunostaining was observed along with disease progression from epithelial hyperplasia to squamous cell carcinoma in tongue. Furthermore, shRNA‐mediated SUZ12 knock‐down significantly inhibited cell proliferation, migration and invasion in HNSCC cells, and resulted in compromised tumour growth in vivo. Collectively, our data reveal that SUZ12 might serve as a putative oncogene by promoting cell proliferation, migration and invasion, and also a novel biomarker with diagnostic and prognostic significance for HNSCC.  相似文献   

13.
p63 belongs to a member of the tumor suppressor protein p53 family. Due to alternative promoter usage, two types of p63 proteins are produced. The ΔNp63 isoform lacks the N‐terminal transactivation domain and is thought to antagonize TAp63 and p53 in target gene regulation. ΔNp63 has been found to be overexpressed in numerous human squamous cell carcinomas, including nasopharyngeal carcinoma (NPC). However, the role of ΔNp63 overexpression in NPC pathogenesis has not been clear. In this study, we use a ΔNp63 overexpressing human NPC cell line (NPC‐076) to explore the possible roles of ΔNp63 in cell proliferation and cell‐cycle regulation. We found that the proliferation of NPC‐076 cell is greatly suppressed when the overexpressed ΔNp63 is silenced by specific ΔNp63 siRNA. Further studies show that ΔNp63 silencing results in the upregulation of CKIs, including p27kip1 and p57kip2 in both mRNA and protein levels. Cell‐cycle analysis shows that ΔNp63 silencing also results in an increased G1 phase cell and apoptotic cell population. Our findings indicate that ΔNp63 plays important roles in the regulation of NPC‐076 cell‐cycle progression, and may play a role in the maintenance of NPC‐076 tumor cell phenotype. J. Cell. Physiol. 219: 117–122, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

14.
Members of the EGFR/ErbB family of tyrosine kinases are found to be highly expressed and deregulated in many cancers, including head and neck squamous cell carcinoma (HNSCC). The ErbB family, including EGFR, has been demonstrated to play key roles in metastasis, tumorigenesis, cell proliferation, and drug resistance. Recently, these characteristics have been linked to a small subpopulation of cells classified as cancer stem cells (CSCs) which are believed to be responsible for tumor initiation and maintenance. In this study, we investigated the possible role of EGFR as a regulator of "stemness" in HNSCC cells. Activation of EGFR by the addition of EGF ligand or ectopic expression of EGFR in two established HNSCC cell lines (UMSCC-22B and HN-1) resulted in the induction of CD44, BMI-1, Oct-4, NANOG, CXCR4, and SDF-1. Activation of EGFR also resulted in increased tumorsphere formation, a characteristic ability of cancer stem cells. Conversely, treatment with the EGFR kinase inhibitor, Gefinitib (Iressa), resulted in decreased expression of the aforementioned genes, and loss of tumorsphere-forming ability. Similar trends were observed in a 99.9% CD44 positive stem cell culture derived from a fresh HNSCC tumor, confirming our findings for the cell lines. Additionally, we found that these putative cancer stem cells, when treated with Gefitinib, possessed a lower capacity to invade and became more sensitive to cisplatin-induced death in vitro. These results suggest that EGFR plays critical roles in the survival, maintenance, and function of cancer stem cells. Drugs that target EGFR, perhaps administered in combination with conventional chemotherapy, might be an effective treatment for HNSCC.  相似文献   

15.
Head and neck squamous cell carcinoma (HNSCC) is usually found at a late stage and distant metastasis occurs at high frequency; therefore, novel prognostic markers are needed. This study was aimed to identify novel tumor markers in HNSCC. We identified 65 proteins which were significantly increased or decreased in the tumors by 2D-DIGE using 12 HNSCC and adjacent non-cancer tissues. Western blotting and immunohistochemical analysis confirmed that the expression of plectin was significantly increased in most cancer tissues as compared with non-cancer tissues. Strikingly, the suppression of endogenous plectin using siRNA inhibited the proliferation, migration and invasion of HNSCC cells and down-regulated Erk 1/2 kinase. Furthermore, immunohistochemistry using paraffin-embedded tissues from 62 patients showed not only that the frequency of recurrence was correlated with the plectin expression but that the prognosis of patients with a high plectin was extremely poor. Moreover, the survival rate of patients with a high plectin was significantly lower than that of patients with low E-cadherin levels, which is known to correlate with the poor prognosis of HNSCC. Our findings suggest that plectin promotes the migration and invasion of HNSCC cells through activation of Erk 1/2 kinase and is a potential prognostic biomarker of HNSCC.  相似文献   

16.
The current treatment strategies, chemotherapy and radiation therapy being used for the management of cancer are deficient in targeted approach leading to treatment related toxicities and relapse. Contrarily, fusion toxins exhibit remarkable tumor specificity thus emerging as an alternative therapy for the treatment of cancer. Diphtheria toxin-HN-1 peptide (DT/HN-1) is a fusion toxin designed to target the head and neck squamous cell carcinoma (HNSCC). The aim of this study was to construct, characterize, and evaluate the cytotoxicity and specificity of DT/HN-1 fusion toxin against the HNSCC cells. The purified DT/HN-1 fusion toxin was characterized by SDS-PAGE and western blotting. Refolding of purified fusion toxins was monitored by fluorescence spectra and circular dichroism spectra. The activity of DT/HN-1 fusion toxin was demonstrated on various HNSCC cell lines by cell viability assay, cell proliferation assay, protein synthesis inhibition assay, apoptosis and cell cycle analysis. The fusion toxin DT/HN-1 demonstrated remarkably high degree of cytotoxicity specific to the HNSCC cells. The IC50 of DT/HN-1 fusion toxin was ~1 to 5 nM in all the three HNSCC cell lines. The percentage apoptotic cells in DT/HN-1 treated UMB-SCC-745 cells are 16% compared to 4% in untreated. To further demonstrate the specific toxicity of DT/HN-1 fusion toxin towards the HNSCC cells we constructed, characterized and evaluated the efficacy of DT protein. The DT protein coding for only a fragment of diphtheria toxin without its native receptor binding domain failed to exhibit any cytotoxicity on all the cell lines used in this study thus establishing the importance of a ligand in achieving targeted toxicity. To evaluate the translocation ability of HN-1 peptide, an additional construct DTΔT/HN-1 was constructed, characterized and evaluated for its cytotoxic activity. The fusion toxin DTΔT/HN-1 deficient of the translocation domain of diphtheria toxin showed no cytotoxicity on all the cell lines clearly indicating the inability of HN-1 peptide to translocate catalytic domain of the toxin into the cytosol.  相似文献   

17.
Cancer stem‐like cells represent a population of tumour‐initiating cells that lead to the relapse and metastasis of cancer. Conventional anti‐cancer therapeutic drugs are usually ineffective in eliminating the cancer stem‐like cells. Therefore, new drugs or therapeutic methods effectively targeting cancer stem‐like cells are in urgent need to successfully cure cancer. Gamboge is a natural anti‐cancer medicine whose pharmacological effects are different from those of conventional chemotherapeutical drugs and they can kill some kinds of cancer cells selectively. In this study, we identified a new gamboge derivative, Compound 2 (C2), which presents eminent suppression effects on cancer cells. Interestingly, when compared with cisplatin (CDDP), C2 effectively suppresses the growth of both cancer stem‐like cells and non‐cancer stem‐like cells derived from head and neck squamous cell carcinoma (HNSCC), inhibiting the formation of tumour spheres and colony in vitro, resulting in the loss of expression of multiple cancer stem cell (CSC)‐related molecules in HNSCC. Treating with C2 effectively inhibited the growth of HNSCC in BALB/C nude mice. Further investigation found that C2 notably inhibits the activation of epithelial growth factor receptor and the phosphorylation of its downstream protein kinase homo sapiens v‐akt murine thymoma viral oncogene homolog (AKT) in HNSCC, resulting in down‐regulation of multiple CSC‐related molecules in HNSCC. Our study has demonstrated that C2 effectively inhibits the stem‐like property of cancer stem‐like cells in HNSCC and may be a hopeful targeting drug in cancer therapy.  相似文献   

18.
Background: Forkhead Box D1 (FOXD1) is differentially expressed in various tumors. However, its role and correlation with immune cell infiltration remains uncertain in head and neck squamous cell carcinoma (HNSC).Methods: FOXD1 expression was analyzed in The Cancer Genome Atlas (TCGA) pan-cancer data. The clinical prognosis influence of FOXD1 was evaluated by clinical survival data of TCGA. Enrichment analysis of FOXD1 was performed using R packages ‘clusterProfiler’. We downloaded the immune cell infiltration score of TCGA samples from published articles, and analyzed the correlation between immune cell infiltration level and FOXD1 expression.Results: FOXD1 was highly expressed and associated with poorer overall survival (OS, P<0.0001), disease-specific survival (DSS, P=0.00011), and progression-free interval (PFI, P<0.0001) in HNSC and some other tumors. In addition, FOXD1 expression was significantly correlated with infiltration of immune cells. Tumor-associated macrophages (TAMs) infiltration increased in tissues with high FOXD1 expression in HNSC. Immunosuppressive genes such as PD-L1, IL-10, TGFB1, and TGFBR1 were significantly positively correlated with FOXD1.Conclusions: Our study suggests FOXD1 to be an oncogene and act as an indicator of poor prognosis in HNSC. FOXD1 might contribute to the TAM infiltration in HNSC. High FOXD1 may be associated with tumor immunosuppression status.  相似文献   

19.
PurposeHead and neck squamous cell carcinoma (HNSCC) is a highly invasive malignancy with poor survival. Perforin (PRF1) plays essential roles in host immunity. Our research intended to identify the correlations of PRF1 with clinical prognosis and tumor immune infiltration in HNSCC.MethodsWe explored PRF1 expression and its associations with the clinical features of HNSCC via the Tumor Immune Estimation Resource (TIMER), Oncomine and The Cancer Genome Atlas (TCGA) databases. The prognostic value of PRF1 for HNSCC was further explored by Kaplan–Meier plotter and TIMER. Finally, the relation between PRF1 and immune infiltration in HNSCC was estimated via CIBERSORT and TIMER.ResultsPRF1 expression was remarkably elevated in HNSCC and associated with clinical stage and HPV infection. High PRF1 expression predicted favorable outcomes in HNSCC, especially in HPV+ HNSCC. Moreover, higher infiltration of CD8+ T cells and CD4+ T cells were found in the PRF1high group of HNSCC. PRF1 expression in HNSCC was strongly correlated with infiltrating CD8+ T cells and dendritic cells (DCs), with higher relevance in HPV+ HNSCC.ConclusionOur findings suggested that PRF1 could be a novel prognostic biomarker in HNSCC and that its expression was related to immune cell infiltration, which was impacted by HPV status.Key words: PRF1, prognosis, head and neck squamous cell carcinoma, tumor immune infiltration, HPV  相似文献   

20.
It has been previously demonstrated that human carcinomas express interleukin-2 receptor (IL-2R) alpha, beta, and gamma chains. The beta and gamma chains of IL-2R have intermediate binding affinity for IL-2 and are responsible for the intracellular signaling cascades after IL-2 stimulation. IL-2Ralpha lacks the cytoplasmic domain, but is essential for increasing the IL-2-binding affinity of other receptors. Overexpression of IL-2Ralpha in tumor cells is associated with tumor progression and a poor patient prognosis. To define molecular mechanisms responsible for the effects associated with IL-2Ralpha expression, ex vivo experiments were performed with the squamous cell carcinoma head-and-neck cancer line, PCI-13, which was genetically engineered to overexpress the IL-2Ralpha chain. While IL-2Ralpha-overexpressing PCI-13 cells were capable of forming colonies in soft agar, PCI-13 cells transfected with the control vector or those expressing IL-2Rgamma did not. Consistently, IL-2Ralpha-expressing tumor cells proliferated more rapidly than the control or IL-2Rgamma+ cells, associated with increased levels of cyclins A and D1 and cyclin-dependent kinase (cdk(s)) 2 and 4 proteins. In addition, IL-2Ralpha-expressing cells were significantly more resistant to apoptosis induction by a tripeptidyl proteasome inhibitor (ALLN) and two chemotherapeutic drugs (VP-16 and taxol) than the control or IL-2Rgamma+ cells. Accompanying the drug resistance, high levels of anti-apoptotic Bcl-X(L) and Bcl-2 proteins were found in the mitochondria-containing fraction of IL-2Ralpha-expressing tumor cells. Treatment of IL-2Ralpha-expressing cells with a specific Janus kinase 3 (Jak3) inhibitor decreased expression of cyclin A, cyclin D1, Bcl-X(L), and Bcl-2 proteins. Finally, high levels of ubiquitinated proteins were detected in the proliferating IL-2Ralpha-expressing cells. Our data suggest that increased proliferation rates and decreased drug sensitivity of IL-2Ralpha-expressing tumor cells are responsible for the enhanced tumor aggressiveness and poor clinical prognosis of patients whose tumors express IL-2Ralpha.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号