首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
FGFR3 mutations have recently been identified in several benign epidermal skin lesions such as seborrheic keratosis, epidermal nevus and solar lentigo. The functional consequences of these mutations in human skin are as yet unknown. In this study we analyzed the functional effects of the most common FGFR3 mutation in benign skin tumors, the R248C FGFR3 hotspot mutation, in human HaCaT keratinocytes. The cells were stably transduced with either the R248C or wildtype FGFR3 IIIb cDNA using a retroviral vector system. FGFR3 mutant and wildtype cells showed similar growth rates at subconfluence. However, at confluence FGFR3 mutant keratinocytes revealed a significantly higher cell number than wildtype cells. Furthermore, FGFR3 mutant cells showed significantly lower levels of apoptosis and decreased attachment to fibronectin compared with FGFR3 wildtype cells. Expression of mutant FGFR3 did not alter migration and senescence. Microarray analysis revealed only a few differentially expressed genes between FGFR3 mutant and wildtype keratinocytes. Enhanced phosphorylation of ERK1/2 was observed in confluent R248C mutant HaCaT cells compared with wildtype keratinocytes. Our results suggest that an increased cell number at confluence along with a decreased apoptosis may contribute to the development of acanthotic tumors in FGFR3 mutant skin in vivo.  相似文献   

2.
Activating mutations in the genes for fibroblast growth factor receptors 1-3 (FGFR1-3) are responsible for a diverse group of skeletal disorders. In general, mutations in FGFR1 and FGFR2 cause the majority of syndromes involving craniosynostosis, whereas the dwarfing syndromes are largely associated with FGFR3 mutations. Osteoglophonic dysplasia (OD) is a "crossover" disorder that has skeletal phenotypes associated with FGFR1, FGFR2, and FGFR3 mutations. Indeed, patients with OD present with craniosynostosis, prominent supraorbital ridge, and depressed nasal bridge, as well as the rhizomelic dwarfism and nonossifying bone lesions that are characteristic of the disorder. We demonstrate here that OD is caused by missense mutations in highly conserved residues comprising the ligand-binding and transmembrane domains of FGFR1, thus defining novel roles for this receptor as a negative regulator of long-bone growth.  相似文献   

3.
Somatic oncogenic activating mutations in FGFR3 and/or PIK3CA have recently been described in benign epithelial cutaneous lesions that never progress to malignancy (seborrheic keratoses and epidermal nevi). The same mutations have been observed in malignant neoplasms from other tissues (bladder carcinoma, cervix cancer, colorectal cancer, myeloma). However, many of the above-mentioned epithelial benign cutaneous tumors do not harbour mutations in FGFR3 or PIK3CA. In this review, we focus on new candidate genes for discovery and we outline the potential of the skin as a model to achieve a better understanding of cancer biology.  相似文献   

4.
5.
Kannan K  Givol D 《IUBMB life》2000,49(3):197-205
This review describes recent progress in the field of fibroblast growth factor receptors (FGFRs) with an emphasis on the role of FGFR mutants in skeletal malformations. This family of four receptors contains the most frequent germline mutations in humans. More than 75 mutations have been recorded, which account for more than seven skeletal syndromes. The common cause for all the mutant phenotypes is gain-of-function by receptor activation through three major mechanisms: receptor dimerization, kinase activation, and increased affinity for FGF. The severity of the disease is correlated with both the extent of receptor activation and the specific tissue in which the mutant receptor form is expressed. Paradoxically, the consequence of receptor activation is inhibition of chondrocyte cell growth through signaling pathways that are cell-type specific. The structure of the FGFR-FGF complex and its possible ternary complex with heparin explain the mechanism of receptor dimerization in the ectodomain and the possible contribution by some of the mutations to this process. Analysis of FGFR3 mutant mice produced by gene targeting as models for human disease, and studies in cell lines, have begun to delineate the novel signaling pathways of FGFR3 and to define possible targets for therapy.  相似文献   

6.
Fibroblast growth factor receptor 3 (FGFR3) activating mutations are drivers of malignancy in several human tissues, including bladder, lung, cervix, and blood. However, in skin, these mutations are associated predominantly with benign, common epidermal growths called seborrheic keratoses (SKs). How epidermis resists FGFR3 mediated transformation is unclear, but previous studies have suggested that FGFR3 activation in skin keratinocytes may serve a tumor-suppressive role by driving differentiation and antagonizing Ras signaling. To define the role of FGFR3 in human normal and neoplastic epidermis, and to directly test the hypothesis that FGFR3 antagonizes Ras, we engineered human skin grafts in vivo with mutant active FGFR3 or shRNA FGFR3 knockdown. We show that FGFR3 active mutants drive mild hyperproliferation, but are insufficient to support benign or malignant tumorigenesis, either alone, or in combination with G1–S checkpoint release. This suggests that additional cell-intrinsic or stromal cues are required for formation of benign SKs with FGFR3 mutations. Further, FGFR3 activation does not alter the growth kinetics or differentiation status of engineered human epidermal SCCs driven by Ras, and FGFR3 protein itself is dispensable for Ras-driven SCC. To extend these findings to patients, we examined a uniquely informative human tumor in which SCC developed in continuity with a SK, raising the hypothesis that one of the tumors evolved from the other. However, mutational analysis from each tumor indicates that the overlapping SK and SCC evolved independently and supports our conclusion that FGFR3 activation is insufficient to drive SCC.  相似文献   

7.
Activating mutations within fibroblast growth factor receptor 3 (FGFR3), a receptor tyrosine kinase, are responsible for human skeletal dysplasias including achondroplasia and the neonatal lethal syndromes thanatophoric dysplasia types I and II. Several of these same FGFR3 mutations have also been identified somatically in human cancers, including multiple myeloma, bladder carcinoma, and cervical cancer. The molecular pathways exploited by FGFR3 to stimulate abnormal proliferation during neoplasia are unclear. The nonreceptor protein-tyrosine kinase Pyk2 (proline-rich tyrosine kinase 2) has been shown previously to regulate apoptosis in multiple myeloma cells. Here we describe a novel interaction between FGFR3 and Pyk2, mediated by the juxtamembrane domain of FGFR3 and the kinase domain of Pyk2. Within the FGFR family, Pyk2 also interacted significantly with FGFR2. Overexpression of Pyk2 alone led to its spontaneous activation and tyrosine phosphorylation, resulting in activation of Stat5B, indicated by the reporter GFP-Stat5B. These effects were completely dependent upon Tyr(402), the autophosphorylation site of Pyk2, which allows recruitment of Src family members for further activating phosphorylations at other sites on Pyk2. In the presence of activated FGFR3, the activation of Pyk2 itself became independent of Tyr(402), indicating that FGFR3 activation circumvents the requirement for c-Src recruitment at Tyr(402) of Pyk2. We also examined the role of the tyrosine phosphatase Shp2 in antagonizing Pyk2 activation. Taken together, these results suggest that signaling pathways regulated by FGFR3 may converge with Pyk2-dependent pathways to provide maximal activation of Stat5B.  相似文献   

8.
Bladder cancer is the most frequent cancer of the urinary system. Fibroblast growth factor receptors (FGFR) belong to the tyrosine kinase family and have important roles in cell differentiation and proliferation and embryogenesis. FGFR3 is located on chromosome 4p16.3, and missense mutations of FGFR3 are associated with autosomal dominant human skeletal disorders and have some oncogenic effects. We examined the incidence of FGFR3 thanatophoric dysplasia mutations located in exon 7, A248C and S249C, and in exon 10, G372C and T375C, and their correlation with clinical-pathological parameters in bladder carcinoma patients. Fifty-six paraffin-embedded specimens of transitional cell carcinoma of the urinary bladder were included in this study. Analysis of FGFR3 thanatophoric dysplasia mutations located in exon 7, A248C and S249C, and in exon 10, G372C and T375C, was performed by PCR-restriction fragment length polymorphism (RFLP) analysis and DNA sequencing. FGFR3 thanatophoric dysplasia mutations located in exon 7, A248C and S249C, and in exon 10, G372C and T375C, were detected in 33 of the 56 patients (heterozygous mutant). Among the 56 transitional cell carcinomas, missense point mutations were detected in seven of them at codon A248C, 28 of them at codon S249C, and three of them at codon T375C, similar to data from previous reports. When the results of the FGFR3 thanatophoric dysplasia mutations located in exon 7, A248C and S249C and in exon 10, G372C and T375C, were analyzed one by one or as a group, despite the findings of previous research reports, our data suggest that these mutations are detected homogenously regardless of the tumor classification and tumor grade.  相似文献   

9.
The fibroblast growth factor-receptor 3 (FGFR3) Lys650 codon is located within a critical region of the tyrosine kinase-domain activation loop. Two missense mutations in this codon are known to result in strong constitutive activation of the FGFR3 tyrosine kinase and cause three different skeletal dysplasia syndromes-thanatophoric dysplasia type II (TD2) (A1948G [Lys650Glu]) and SADDAN (severe achondroplasia with developmental delay and acanthosis nigricans) syndrome and thanatophoric dysplasia type I (TD1) (both due to A1949T [Lys650Met]). Other mutations within the FGFR3 tyrosine kinase domain (e.g., C1620A or C1620G [both resulting in Asn540Lys]) are known to cause hypochondroplasia, a relatively common but milder skeletal dysplasia. In 90 individuals with suspected clinical diagnoses of hypochondroplasia who do not have Asn540Lys mutations, we screened for mutations, in FGFR3 exon 15, that would disrupt a unique BbsI restriction site that includes the Lys650 codon. We report here the discovery of three novel mutations (G1950T and G1950C [both resulting in Lys650Asn] and A1948C [Lys650Gln]) occurring in six individuals from five families. Several physical and radiological features of these individuals were significantly milder than those in individuals with the Asn540Lys mutations. The Lys650Asn/Gln mutations result in constitutive activation of the FGFR3 tyrosine kinase but to a lesser degree than that observed with the Lys540Glu and Lys650Met mutations. These results demonstrate that different amino acid substitutions at the FGFR3 Lys650 codon can result in several different skeletal dysplasia phenotypes.  相似文献   

10.
Britto JA  Chan JC  Evans RD  Hayward RD  Jones BM 《Plastic and reconstructive surgery》2001,107(6):1331-8; discussion 1339-45
The Apert hand is characterized by metaphyseal fusions of the metacarpals and distal phalanges, symphalangism, and soft-tissue syndactyly. More subtle skeletal anomalies of the limb characterize Pfeiffer and Crouzon syndromes. Different mutations in the fibroblast growth factor receptor 2 (FGFR2) gene cause these syndromes, and offer the opportunity to relate genotype to phenotype. The expression of FGFR1 and of the Bek and KGFR isoforms of FGFR2 has, therefore, been studied in human hand development at 12 weeks by in situ hybridization. FGFRs are differentially expressed in the mesenchyme and skeletal elements during endochondral ossification of the developing human hand. KGFR expression characterizes the metaphyseal periosteum and interphalangeal joints. FGFR1 is preferentially expressed in the diaphyses, whereas FGFR2-Bek expression characterizes metaphyseal and diaphyseal elements, and the interdigital mesenchyme. Apert metaphyseal synostosis and symphalangism reflect KGFR expression, which has independently been quantitatively related ex vivo to the severity of clinical digital presentations in these syndromes. Studies in avian development implicate FGF signaling in preventing interdigital apoptosis and maintaining the interdigital mesenchyme. Herein is proposed that in human FGFR syndromes the balance of signaling by means of KGFR and Bek in digital development determines the clinical severity of soft-tissue and bony syndactyly.  相似文献   

11.
Cellular signaling by fibroblast growth factor receptors   总被引:20,自引:0,他引:20  
The 22 members of the fibroblast growth factor (FGF) family of growth factors mediate their cellular responses by binding to and activating the different isoforms encoded by the four receptor tyrosine kinases (RTKs) designated FGFR1, FGFR2, FGFR3 and FGFR4. Unlike other growth factors, FGFs act in concert with heparin or heparan sulfate proteoglycan (HSPG) to activate FGFRs and to induce the pleiotropic responses that lead to the variety of cellular responses induced by this large family of growth factors. A variety of human skeletal dysplasias have been linked to specific point mutations in FGFR1, FGFR2 and FGFR3 leading to severe impairment in cranial, digital and skeletal development. Gain of function mutations in FGFRs were also identified in a variety of human cancers such as myeloproliferative syndromes, lymphomas, prostate and breast cancers as well as other malignant diseases. The binding of FGF and HSPG to the extracellular ligand domain of FGFR induces receptor dimerization, activation and autophosphorylation of multiple tyrosine residues in the cytoplasmic domain of the receptor molecule. A variety of signaling proteins are phosphorylated in response to FGF stimulation including Shc, phospholipase-Cgamma, STAT1, Gab1 and FRS2alpha leading to stimulation of intracellular signaling pathways that control cell proliferation, cell differentiation, cell migration, cell survival and cell shape. The docking proteins FRS2alpha and FRS2beta are major mediators of the Ras/MAPK and PI-3 kinase/Akt signaling pathways as well as negative feedback mechanisms that fine-tune the signal that is initiated at the cell surface following FGFR stimulation.  相似文献   

12.
13.
J A Britto  R D Evans  R D Hayward  B M Jones 《Plastic and reconstructive surgery》2001,108(7):2026-39; discussion 2040-6
Mutations in the fibroblast growth factor receptor (FGFR) genes 1, 2, and 3 are causal in a number of craniofacial dysostosis syndromes featuring craniosynostosis with basicranial and midfacial deformity. Great clinical variability is displayed in the pathologic phenotypes encountered. To investigate the influence of developmental genetics on clinical diversity in these syndromes, the expression of several genes implicated in their pathology was studied at sequential stages of normal human embryo-fetal cranial base and facial ossification (n = 6). At 8 weeks of gestation, FGFR1, FGFR2, and FGFR3 are equally expressed throughout the predifferentiated mesenchyme of the cranium, the endochondral skull base, and midfacial mesenchyme. Both clinically significant isoforms of FGFR2, IgIIIa/c and IgIIIa/b, are coexpressed in maxillary and basicranial ossification. By 10 to 13 weeks, FGFR1 and FGFR2 are broadly expressed in epithelia, osteogenic, and chondrogenic cell lineages. FGFR3, however, is maximally expressed in dental epithelia and proliferating chondrocytes of the skull base, but poorly expressed in the osteogenic tissues of the midface. FGF2 and FGF4, but not FGF7, and TGFbeta1 and TGFbeta3 are expressed throughout both osteogenic and chondrogenic tissues in early human craniofacial skeletogenesis. Maximal FGFR expression in the skull base proposes a pivotal role for syndromic growth dysplasia at this site. Paucity of FGFR3 expression in human midfacial development correlates with the relatively benign human mutant FGFR3 midfacial phenotypes. The regulation of FGFR expression in human craniofacial skeletogenesis against background excess ligand and selected cofactors may therefore play a profound role in the pathologic craniofacial development of children bearing FGFR mutations.  相似文献   

14.
Thanatophoric dysplasia type II (TDII) is a neonatal lethal skeletal dysplasia caused by a recurrent Lys-650-->Glu mutation within the highly conserved activation loop of the kinase domain of fibroblast growth factor receptor 3 (FGFR3). We demonstrate here that this mutation results in profound constitutive activation of the FGFR3 tyrosine kinase, approximately 100-fold above that of wild-type FGFR3. The mechanism of FGFR3 activation in TDII was probed by constructing various point mutations in the activation loop. Substitutions at position 650 indicated that not only Glu but also Asp and, to a lesser extent, Gln and Leu result in pronounced constitutive activation of FGFR3. Additional mutagenesis within the beta10-beta11 loop region (amino acids Tyr-647 to Leu-656) demonstrated that amino acid 650 is the only residue which can activate the receptor when changed to a Glu, indicating a specificity of position as well as charge for mutations which can give rise to kinase activation. Furthermore, when predicted sites of autophosphorylation at Tyr-647 and Tyr-648 were mutated to Phe, either singly or in combination, constitutive kinase activity was still observed in response to the Lys-650-->Glu mutation, although the effect of these mutations on downstream signalling was not investigated. Our data suggest that the molecular effect of the TDII activation loop mutation is to mimic the conformational changes that activate the tyrosine kinase domain, which are normally initiated by ligand binding and autophosphorylation. These results have broad implications for understanding the molecular basis of other human developmental syndromes that involve mutations in members of the FGFR family. Moreover, these findings are relevant to the study of kinase regulation and the design of activating mutations in related tyrosine kinases.  相似文献   

15.
Thanatophoric dysplasia (TD) is a lethal dwarfism condition due to missense mutations in the fibroblast growth factor receptor 3 (FGFR3) gene. Examination of TD patients reveals mainly the involvement of the skeletal system and the brain, but also renal and cardiovascular anomalies have been described. We report the prenatal detection of TD type 1 (TD1) associated with bilateral cystic renal dysplasia (CRD) Potter's type II, in which the molecular analysis reveals the typical Arg248Cys substitution in the FGFR3 gene. CRD has not been previously described in TD or other conditions due to FGFR3 mutations, but occurs in Apert syndrome (due to FGFR2 mutations). The possible involvement of renal developmental defect in FGFR3 mutations is discussed.  相似文献   

16.
It has been known for several years that heterozygous mutations of three members of the fibroblast growth-factor-receptor family of signal-transduction molecules-namely, FGFR1, FGFR2, and FGFR3-contribute significantly to disorders of bone patterning and growth. FGFR3 mutations, which predominantly cause short-limbed bone dysplasia, occur in all three major regions (i.e., extracellular, transmembrane, and intracellular) of the protein. By contrast, most mutations described in FGFR2 localize to just two exons (IIIa and IIIc), encoding the IgIII domain in the extracellular region, resulting in syndromic craniosynostosis including Apert, Crouzon, or Pfeiffer syndromes. Interpretation of this apparent clustering of mutations in FGFR2 has been hampered by the absence of any complete FGFR2-mutation screen. We have now undertaken such a screen in 259 patients with craniosynostosis in whom mutations in other genes (e.g., FGFR1, FGFR3, and TWIST) had been excluded; part of this screen was a cohort-based study, enabling unbiased estimates of the mutation distribution to be obtained. Although the majority (61/62 in the cohort sample) of FGFR2 mutations localized to the IIIa and IIIc exons, we identified mutations in seven additional exons-including six distinct mutations of the tyrosine kinase region and a single mutation of the IgII domain. The majority of patients with atypical mutations had diagnoses of Pfeiffer syndrome or Crouzon syndrome. Overall, FGFR2 mutations were present in 9.8% of patients with craniosynostosis who were included in a prospectively ascertained sample, but no mutations were found in association with isolated fusion of the metopic or sagittal sutures. We conclude that the spectrum of FGFR2 mutations causing craniosynostosis is wider than previously recognized but that, nevertheless, the IgIIIa/IIIc region represents a genuine mutation hotspot.  相似文献   

17.
Fibroblast growth factor receptors (FGFRs) play diverse roles in the control of cell proliferation, cell differentiation, angiogenesis and development. Activating the mutations of FGFRs in the germline has long been known to cause a variety of skeletal developmental disorders, but it is only recently that a similar spectrum of somatic FGFR mutations has been associated with human cancers. Many of these somatic mutations are gain-of-function and oncogenic and create dependencies in tumor cell lines harboring such mutations. A combination of knockdown studies and pharmaceutical inhibition in preclinical models has further substantiated genomically altered FGFR as a therapeutic target in cancer, and the oncology community is responding with clinical trials evaluating multikinase inhibitors with anti-FGFR activity and a new generation of specific pan-FGFR inhibitors.  相似文献   

18.
Thanatophoric dysplasia is a member of the achondroplasia family of human skeletal dysplasias, which result from FGFR3 mutations that exaggerate this receptor's inhibitory influence on chondrocyte proliferation and differentiation in the skeletal growth plate. We have previously reported that defective lysosomal degradation of activated receptor contributes to the gain-of-function of the mutant FGFR3. We now provide evidence that this disturbance is mediated by the receptor's kinase activity and involves constitutive induction and activation of Spry2. Our findings suggest that activated Spry2 may interfere with c-Cbl-mediated ubiquitination of FGFR3 by sequestering c-Cbl. They provide novel insight into the pathogenesis of this group of human skeletal dysplasias and identify a mechanism that potentially could be targeted therapeutically.  相似文献   

19.
FGF signaling plays a ubiquitous role in human biology as a regulator of embryonic development, homeostasis and regenerative processes. In addition, aberrant FGF signaling leads to diverse human pathologies including skeletal, olfactory, and metabolic disorders as well as cancer. FGFs execute their pleiotropic biological actions by binding, dimerizing and activating cell surface FGF receptors (FGFRs). Proper regulation of FGF-FGFR binding specificity is essential for the regulation of FGF signaling and is achieved through primary sequence variations among the 18 FGFs and seven FGFRs. The severity of human skeletal syndromes arising from mutations that violate FGF-FGFR specificity is a testament to the importance of maintaining precision in FGF-FGFR specificity. The discovery that heparin/heparan sulfate (HS) proteoglycans are required for FGF signaling led to numerous models for FGFR dimerization and heralded one of the most controversial issues in FGF signaling. Recent crystallographic analyses have led to two fundamentally different models for FGFR dimerization. These models differ in both the stoichiometry and minimal length of heparin required for dimerization, the quaternary arrangement of FGF, FGFR and heparin in the dimer, and in the mechanism of 1:1 FGF-FGFR recognition and specificity. In this review, we provide an overview of recent structural and biochemical studies used to differentiate between the two crystallographic models. Interestingly, the structural and biophysical analyses of naturally occurring pathogenic FGFR mutations have provided the most compelling and unbiased evidences for the correct mechanisms for FGF-FGFR dimerization and binding specificity. The structural analyses of different FGF-FGFR complexes have also shed light on the intricate mechanisms determining FGF-FGFR binding specificity and promiscuity and also provide a plausible explanation for the molecular basis of a large number craniosynostosis mutations.  相似文献   

20.
Fibroblast growth factor receptor 3 (FGFR3) is a key regulator of skeletal development and activating mutations in FGFR3 cause skeletal dysplasias, including hypochondroplasia, achondroplasia and thanatophoric dysplasia. The introduction of the Y367C mutation corresponding to the human Y373C thanatophoric dysplasia type I (TDI) mutation into the mouse genome, resulted in dwarfism with a skeletal phenotype remarkably similar to that of human chondrodysplasia. To investigate the role of the activating Fgfr3 Y367C mutation in auditory function, the middle and inner ear of the heterozygous mutant Fgfr3Y367C/+ mice were examined. The mutant Fgfr3Y367C/+ mice exhibit fully penetrant deafness with a significantly elevated auditory brainstem response threshold for all frequencies tested. The inner ear defect is mainly associated with an increased number of pillar cells or modified supporting cells in the organ of Corti. Hearing loss in the Fgfr3Y367C/+ mouse model demonstrates the crucial role of Fgfr3 in the development of the inner ear and provides novel insight on the biological consequences of FGFR3 mutations in chondrodysplasia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号