首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Abstract

Desmosomes have long been appreciated as intercellular junctions that are vital for maintaining the structural integrity of stratified epithelia. More recent clinical investigations of patients with diseases such as arrhythmogenic cardiomyopathy have further highlighted the importance of desmosomes in cardiac tissue, where they help to maintain coordination of cardiac myocytes. Here, we review clinical and mechanistic studies that provide insight into the functions of desmosomal proteins in skin and heart during homeostasis and in disease. While intercellular junctions are organized differently in cardiac and epithelial tissues, studies conducted in epithelial systems may inform our understanding of cardiac desmosomes. We explore traditional and non-traditional roles of desmosomal proteins, ranging from adhesive capacities to nuclear functions. Finally, we discuss how these studies can guide future investigations focused on determining the molecular mechanisms by which desmosomal mutations promote the development of cardiac diseases.  相似文献   

4.
The desmosome and pemphigus   总被引:3,自引:2,他引:1  
Desmosomes are patch-like intercellular adhering junctions ("maculae adherentes"), which, in concert with the related adherens junctions, provide the mechanical strength to intercellular adhesion. Therefore, it is not surprising that desmosomes are abundant in tissues subjected to significant mechanical stress such as stratified epithelia and myocardium. Desmosomal adhesion is based on the Ca(2+)-dependent, homo- and heterophilic transinteraction of cadherin-type adhesion molecules. Desmosomal cadherins are anchored to the intermediate filament cytoskeleton by adaptor proteins of the armadillo and plakin families. Desmosomes are dynamic structures subjected to regulation and are therefore targets of signalling pathways, which control their molecular composition and adhesive properties. Moreover, evidence is emerging that desmosomal components themselves take part in outside-in signalling under physiologic and pathologic conditions. Disturbed desmosomal adhesion contributes to the pathogenesis of a number of diseases such as pemphigus, which is caused by autoantibodies against desmosomal cadherins. Beside pemphigus, desmosome-associated diseases are caused by other mechanisms such as genetic defects or bacterial toxins. Because most of these diseases affect the skin, desmosomes are interesting not only for cell biologists who are inspired by their complex structure and molecular composition, but also for clinical physicians who are confronted with patients suffering from severe blistering skin diseases such as pemphigus. To develop disease-specific therapeutic approaches, more insights into the molecular composition and regulation of desmosomes are required.  相似文献   

5.
Defects in desmosome-mediated cell-cell adhesion can lead to tissue fragility syndromes. Both inherited and acquired diseases caused by desmosomal defects have been described. The two organs that appear most vulnerable to these defects are the skin with its appendages, and the heart. Furthermore, the analysis of genetically engineered mice has led to the discovery that desmosomal proteins are also required for normal embryonic development. Knockout mice for several desmosomal proteins die in utero. Depending on the protein studied, death occurs either around the time of implantation, at mid-gestation or shortly before birth. So far, it appears that structural defects leading to abnormal histo-architecture and tissue fragility are the main cause of death, i.e. there is no evidence that loss of a desmosomal protein would abort specific cell lineages or differentiation programs. Nevertheless, we are only beginning to understand the functions of individual desmosomal proteins during development. This review focuses on the role of desmosomes during mouse embryonic development.  相似文献   

6.
Desmosomes and adherens junctions are cadherin-based protein complexes responsible for cell-cell adhesion of epithelial cells. Type 1 cadherins of adherens junctions show specific homophilic adhesion that plays a major role in developmental tissue segregation. The desmosomal cadherins, desmocollin and desmoglein, occur as several different isoforms with overlapping expression in some tissues where different isoforms are located in the same desmosomes. Although adhesive binding of desmosomal cadherins has been investigated in a variety of ways, their interaction in desmosome-forming epithelial cells has not been studied. Here, using extracellular homobifunctional cross-linking, we provide evidence for homophilic and isoform-specific binding between the Dsc2, Dsc3, Dsg2, and Dsg3 isoforms in HaCaT keratinocytes and show that it represents trans interaction. Furthermore, the cross-linked adducts are present in the detergent-insoluble fraction, and electron microscopy shows that extracellular cross-linking probably occurs in desmosomes. We found no evidence for either heterophilic or cis interaction, but neither can be completely excluded by our data. Mutation of amino acid residues Trp-2 and Ala-80 that are important for trans interaction in classical cadherin adhesive binding abolished Dsc2 binding, indicating that these residues are also involved in desmosomal adhesion. These interactions of desmosomal cadherins may be of key importance for their ordered arrangement within desmosomes that we believe is essential for desmosomal adhesive strength and the maintenance of tissue integrity.  相似文献   

7.
Desmosomal cadherins constitute the adhesive core of desmosomes. Different desmosomal cadherins are differentially expressed in a tissue-specific as well as differentiation-dependent manner. The skin and the heart are two examples of tissues whose vital functions require the ability to endure mechanical stress, and therefore, rely on the integrity of desmosomal adhesion. When this adhesion is compromised via mutations in genes encoding desmosomal cadherins or associated plaque proteins, both tissues can suffer the consequences. Open questions revolve around whether the resulting phenotypes are solely because of physical disruption of cell adhesion or whether these events are coupled with signaling mechanisms that influence many additional cellular processes. In this review, we focus on new developments in desmosomal adhesion with an emphasis on the skin, hair, and heart.  相似文献   

8.
Abstract

Cell Communication and Adhesion has been fortunate to enlist two pioneers of epidermal and cardiac cell junctions, Kathleen Green and Mario Delmar, as Guest Editors of a two part series on junctional targets of skin and heart disease. Part 2 of this series begins with an overview from Dipal Patel and Kathy Green comparing epidermal desmosomes to cardiac area composita junctions, and surveying the pathogenic mechanisms resulting from mutations in their components in heart disease. This is followed by a review from David Kelsell on the role of desmosomal mutation in inherited syndromes involving skin fragility. Agnieszka Kobeliak discusses how structural deficits in the epidermal barrier intersect with the NFkB signaling pathway to induce inflammatory diseases such as psoriasis and atopic dermatitis. Farah Sheikh reviews the specialized junctional components in cardiomyocytes of the cardiac conduction system and Robert Gourdie discusses how molecular complexes between sodium channels and gap junction proteins within the perijunctional microdomains within the intercalated disc facilitate conduction. Glenn Radice evaluates the role of N-cadherin in heart. Andre Kleber and Chris Chen explore new approaches to study junctional mechanotransduction in vitro with a focus on the effects of connexin ablation and the role of cadherins, respectively. To complement this series of reviews, we have interviewed Werner Franke, whose systematic documentation the tissue-specific complexity of desmosome composition and pioneering discovery of the cardiac area composita junction greatly facilitated elucidation of the role of desmosomal components in the pathophysiology of human heart disease.  相似文献   

9.
Intercellular junctions which are similar in ultrastructure and protein composition to typical desmosomes have so far only been found in epithelial cells and in heart tissue, specifically in the intercalated disks of cardiac myocytes and at cell boundaries between Purkinje fiber cells. In epithelial cells the cytoplasmic side of desmosomes, the 'desmosomal plaque', represents a specific attachment structure for the anchorage of intermediate filaments (IF) of the cytokeratin type. Cardiac myocytes do not contain cytokeratin filaments. In primary cultures of rat cardiac myocytes, we have examined by immunofluorescence and electron microscopy, using single and double label techniques, whether other types of IF are attached to the desmosomal plaques of the heart. Antibodies to desmoplakin, the major protein of the desmosomal plaque, have been used to label specifically the desmosomal plaques. It is shown that the desmoplakin-containing structures are often associated with IF stained by antibodies to desmin, i.e., the characteristic type of IF present in these cells. Like cytokeratin filaments in epithelial cells, desmin filaments attach laterally to the desmosomal plaque. They also remain attached to these plaques after endocytotic internalization of desmosomal domains by treatment of the cells with EGTA. These desmin filaments do not appear to attach to junctions of the fascia adherens type and to nexuses (gap junctions). These observations show that anchorage at desmosomal plaques is not restricted to IF of the cytokeratin type and that IF composed of either cytokeratin or desmin, specifically attach, in a lateral fashion, to desmoplakin-containing regions of the plasma membrane. We conclude that special domains exist in these two IF proteins that are involved in binding to the desmosomal plaque.  相似文献   

10.
During embryonic development tissues remain malleable to participate in morphogenetic movements but on completion of morphogenesis they must acquire the toughness essential for independent adult life. Desmosomes are cell-cell junctions that maintain tissue integrity especially where resistance to mechanical stress is required. Desmosomes in adult tissues are termed hyper-adhesive because they adhere strongly and are experimentally resistant to extracellular calcium chelation. Wounding results in weakening of desmosomal adhesion to a calcium-dependent state, presumably to facilitate cell migration and wound closure. Since desmosomes appear early in mouse tissue development we hypothesised that initial weak adhesion would be followed by acquisition of hyper-adhesion, the opposite of what happens on wounding. We show that epidermal desmosomes are calcium-dependent until embryonic day 12 (E12) and become hyper-adhesive by E14. Similarly, trophectodermal desmosomes change from calcium-dependence to hyper-adhesiveness as blastocyst development proceeds from E3 to E4.5. In both, development of hyper-adhesion is accompanied by the appearance of a midline between the plasma membranes supporting previous evidence that hyper-adhesiveness depends on the organised arrangement of desmosomal cadherins. By contrast, adherens junctions remain calcium-dependent throughout but tight junctions become calcium-independent as desmosomes mature. Using protein kinase C (PKC) activation and PKCα-/- mice, we provide evidence suggesting that conventional PKC isoforms are involved in developmental progression to hyper-adhesiveness. We demonstrate that modulation of desmosomal adhesion by PKC can regulate migration of trophectoderm. It appears that tissue stabilisation is one of several roles played by desmosomes in animal development.  相似文献   

11.
Plakoglobin (gamma-catenin), a member of the armadillo family of proteins, is a constituent of the cytoplasmic plaque of desmosomes as well as of other adhering cell junctions, and is involved in anchorage of cytoskeletal filaments to specific cadherins. We have generated a null mutation of the plakoglobin gene in mice. Homozygous -/- mutant animals die between days 12-16 of embryogenesis due to defects in heart function. Often, heart ventricles burst and blood floods the pericard. This tissue instability correlates with the absence of desmosomes in heart, but not in epithelia organs. Instead, extended adherens junctions are formed in the heart, which contain desmosomal proteins, i.e., desmoplakin. Thus, plakoglobin is an essential component of myocardiac desmosomes and seems to play a crucial role in the sorting out of desmosomal and adherens junction components, and consequently in the architecture of intercalated discs and the stabilization of heart tissue.  相似文献   

12.
Abstract

Autoantibodies from patients suffering from the autoimmune blistering skin disease pemphigus can be applied as tools to study desmosomal adhesion. These autoantibodies targeting the desmosomal cadherins desmoglein (Dsg) 1 and Dsg3 cause disruption of desmosomes and loss of intercellular cohesion. Although pemphigus autoantibodies were initially proposed to sterically hinder desmosomes, many groups have shown that they activate signaling pathways which cause disruption of desmosomes and loss of intercellular cohesion by uncoupling the desmosomal plaque from the intermediate filament cytoskeleton and/or by interfering with desmosome turnover. These studies demonstrate that desmogleins serve as receptor molecules to transmit outside-in signaling and demonstrate that desmosomal cadherins have functions in addition to their adhesive properties. Two central molecules regulating cytoskeletal anchorage and desmosome turnover are p38MAPK and PKC. As cytoskeletal uncoupling in turn enhances Dsg3 depletion from desmosomes, both mechanisms reinforce one another in a vicious cycle that compromise the integrity and number of desmosomes.  相似文献   

13.
Desmosomes are intercellular adhering junctions characterized by a special structure and certain obligatory constituent proteins such as the cytoplasmic protein, desmoglein. Desmosomal fractions from bovine muzzle epidermis contain, in addition, a major polypeptide of Mr approximately 75,000 ("band 6 protein") which differs from all other desmosomal proteins so far identified by its positive charge (isoelectric at pH approximately 8.5 in the denatured state) and its avidity to bind certain type I cytokeratins under stringent conditions. We purified this protein from bovine muzzle epidermis and raised antibodies to it. Using affinity-purified antibodies, we identified a protein of identical SDS-PAGE mobility and isoelectric pH in all epithelia of higher complexity, including representatives of stratified, complex (pseudostratified) and transitional epithelia as well as benign and malignant human tumors derived from such epithelia. Immunolocalization studies revealed the location of this protein along cell boundaries in stratified and complex epithelia, often resolved into punctate arrays. In some epithelia it seemed to be restricted to certain cell types and layers; in rat cornea, for example, it was only detected in upper strata. Electron microscopic immunolocalization showed that this protein is a component of the desmosomal plaque. However, it was not found in the desmosomes of all simple epithelia examined, in the tumors and cultured cells derived thereof, in myocardiac and Purkinje fiber cells, in arachnoideal cells and meningiomas, and in dendritic reticulum cells of lymphoid tissue, i.e., all cells containing typical desmosomes. The protein was also absent in all nondesmosomal adhering junctions. From these results we conclude that this basic protein is not an obligatory desmosomal plaque constituent but an accessory component specific to the desmosomes of certain kinds of epithelial cells with stratified tissue architecture. This suggests that the Mr 75,000 basic protein does not serve general desmosomal functions but rather cell type-specific ones and that the composition of the desmosomal plaque can be different in different cell types. The possible diagnostic value of this protein as a marker in cell typing is discussed.  相似文献   

14.
New evidence from blocking desmosomal adhesion with anti-adhesion peptides reveals a role for desmosomes in cell positioning in morphogenesis. Desmosomal adhesion is necessary for the stability of adherens junctions in epithelial cell sheets. Knockout and mis-expression of desmosomal cadherins in mice suggests that they may function directly or indirectly in regulating epidermal differentiation. Protein kinase C signalling and tyrosine phosphorylation appear to regulate desmosomal adhesion. There are new insights into the role of desmosomal cadherins in autoimmune, infectious and genetic disease.  相似文献   

15.
Plakoglobin (PG) is a member of the Armadillo family of adhesion/signaling proteins that can be incorporated into both adherens junctions and desmosomes. Loss of PG results in defects in the mechanical integrity of heart and skin and decreased adhesive strength in keratinocyte cultures established from the skin of PG knock-out (PG-/-) mice, the latter of which cannot be compensated for by overexpressing the closely related beta-catenin. In this study, we examined the mechanisms of PG-regulated adhesion in murine keratinocytes. Biochemical and morphological analyses indicated that junctional incorporation of desmosomal, but not adherens junction, components was impaired in PG-/- cells compared with PG+/- controls. Re-expression of PG, but not beta-catenin, in PG-/- cells largely reversed these effects, indicating a key role for PG in desmosome assembly. Epidermal growth factor (EGF) receptor activation resulted in Tyr phosphorylation of PG, which was accompanied by a loss of desmoplakin from desmosomes and decreased adhesive strength following 18-h EGF treatment. Importantly, introduction of a phosphorylation-deficient PG mutant into PG null cells prevented the EGF receptor-dependent loss of desmoplakin from junctions, attenuating the effects of long term EGF treatment on cell adhesion. Therefore, PG is essential for maintaining and regulating adhesive strength in keratinocytes largely through its contributions to desmosome assembly and structure. As a target for modulation by EGF, regulation of PG-dependent adhesion may play an important role during wound healing and tumor metastasis.  相似文献   

16.
Cell adhesion and communication are interdependent aspects of cell behavior that are critical for morphogenesis and tissue architecture. In the skin, epidermal adhesion is mediated in part by specialized cell-cell junctions known as desmosomes, which are characterized by the presence of desmosomal cadherins, known as desmogleins and desmocollins. We identified a cadherin family member, desmoglein 4, which is expressed in the suprabasal epidermis and hair follicle. The essential role of desmoglein 4 in skin was established by identifying mutations in families with inherited hypotrichosis, as well as in the lanceolate hair mouse. We also show that DSG4 is an autoantigen in pemphigus vulgaris. Characterization of the phenotype of naturally occurring mutant mice revealed disruption of desmosomal adhesion and perturbations in keratinocyte behavior. We provide evidence that desmoglein 4 is a key mediator of keratinocyte cell adhesion in the hair follicle, where it coordinates the transition from proliferation to differentiation.  相似文献   

17.
《The Journal of cell biology》1984,98(3):1072-1081
Desmosomal proteins are co-expressed with intermediate-sized filaments (IF) of the cytokeratin type in epithelial cells, and these IF are firmly attached to the desmosomal plaque. In meningiomal and certain arachnoidal cells, however, vimentin IF are attached to desmosomal plaques. Meningiomas obtained after surgery, arachnoid "membranes", and arachnoid granulations at autopsy, as well as meningiomal cells grown in short-term culture have been examined by single and double immunofluorescence and immunoelectron microscopy using antibodies to desmoplakins, vimentin, cytokeratins, glial filament protein, neurofilament protein, and procollagen. In addition, two-dimensional gel electrophoresis of the cytoskeletal proteins has been performed. Using all of these techniques, vimentin was the only IF protein that was detected in significant amounts. The junctions morphologically resembling desmosomes of epithelial cells have been identified as true desmosomes by antibodies specific for desmoplakins and they provided the membrane attachment sites for the vimentin IF. These findings show that anchorage of IF to the cell surface at desmosomal plaques is not restricted to cytokeratin IF as in epithelial cells and desmin IF as in cardiac myocytes, suggesting that binding to desmosomes and hemidesmosomes is a more common feature of IF organization. The co- expression of desmosomal proteins and IF of the vimentin type only defines a new class of cell ("desmofibrocyte") and may also provide an important histodiagnostic criterion.  相似文献   

18.
Desmosomes are adhesive intercellular junctions prominent in the skin and heart. Loss of desmosome function is associated with severe congenital and acquired disorders characterized by tissue fragility. Pemphigus vulgaris (PV) is an autoimmune disorder in which antibodies are directed against the desmosomal adhesion molecule Dsg3, resulting in severe mucosal erosions and epidermal blistering. To define the mechanisms by which Dsg3 autoantibodies disrupt keratinocyte adhesion, the fate of PV IgG and various desmosomal components was monitored in primary human keratinocytes exposed to PV patient IgG. PV IgG initially bound to keratinocyte cell surfaces and colocalized with desmosomal markers. Within 6 h after PV IgG binding to Dsg3, electron microscopy revealed that desmosomes were dramatically disrupted and keratinocyte adhesion was severely compromised. Immunofluorescence analysis indicated that PV IgG and Dsg3 were rapidly internalized from the cell surface in a complex with plakoglobin but not desmoplakin. Dsg3 internalization was associated with retraction of keratin filaments from cell-cell borders. Furthermore, the internalized PV IgG-Dsg3 complex colocalized with markers for both endosomes and lysosomes, suggesting that Dsg3 was targeted for degradation. Consistent with this possibility, biotinylation experiments demonstrated that soluble Dsg3 cell surface pools were rapidly depleted followed by loss of detergent-insoluble Dsg3. These findings demonstrate that Dsg3 endocytosis, keratin filament retraction, and the loss of keratinocyte cell-cell adhesion are coordinated responses to PV IgG.  相似文献   

19.
Desmosomes play a critical role in the maintenance of normal tissue architecture. Skin blistering can occur when desmosomal adhesion is compromised by antibodies in autoimmune diseases such as pemphigus. Inherited mutations in genes encoding desmosomal constituents can adversely affect the skin, and result in heart abnormalities. Desmosomes may have a tumour suppressor function: expression of desmosomal components is reduced in some human cancers, and desmosomal cadherins have the capacity to suppress the invasiveness of cells in culture. Transgenic animal research has provided important insights into the role of these junctions in normal epithelial morphogenesis and disease.  相似文献   

20.
Epithelial cells are tightly coupled together through specialized intercellular junctions, including adherens junctions, desmosomes, tight junctions, and gap junctions. A growing body of evidence suggests epithelial cells also directly exchange information at cell-cell contacts via the Eph family of receptor tyrosine kinases and their membrane-associated ephrin ligands. Ligand-dependent and -independent signaling via Eph receptors as well as reverse signaling through ephrins impact epithelial tissue homeostasis by organizing stem cell compartments and regulating cell proliferation, migration, adhesion, differentiation, and survival. This review focuses on breast, gut, and skin epithelia as representative examples for how Eph receptors and ephrins modulate diverse epithelial cell responses in a context-dependent manner. Abnormal Eph receptor and ephrin signaling is implicated in a variety of epithelial diseases raising the intriguing possibility that this cell-cell communication pathway can be therapeutically harnessed to normalize epithelial function in pathological settings like cancer or chronic inflammation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号