首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The aging field is replete with theories. Over the past years, many distinct, yet overlapping mechanisms have been proposed to explain organismal aging. These include free radicals, loss of heterochromatin, genetically programmed senescence, telomere shortening, genomic instability, nutritional intake and growth signaling, to name a few. The objective of this Point-of-View is to highlight recent progress on the “loss of heterochromatin” model of aging and to propose that epigenetic changes contributing to global heterochromatin loss may underlie the various cellular processes associated with aging.  相似文献   

3.
Cellular senescence triggers various types of heterochromatin remodeling that contribute to aging. However, the age-related mechanisms that lead to these epigenetic alterations remain elusive. Here, we asked how two key aging hallmarks, telomere shortening and constitutive heterochromatin loss, are mechanistically connected during senescence. We show that, at the onset of senescence, pericentromeric heterochromatin is specifically dismantled consisting of chromatin decondensation, accumulation of DNA breakages, illegitimate recombination and loss of DNA. This process is caused by telomere shortening or genotoxic stress by a sequence of events starting from TP53-dependent downregulation of the telomere protective protein TRF2. The resulting loss of TRF2 at pericentromeres triggers DNA breaks activating ATM, which in turn leads to heterochromatin decondensation by releasing KAP1 and Lamin B1, recombination and satellite DNA excision found in the cytosol associated with cGAS. This TP53–TRF2 axis activates the interferon response and the formation of chromosome rearrangements when the cells escape the senescent growth arrest. Overall, these results reveal the role of TP53 as pericentromeric disassembler and define the basic principles of how a TP53-dependent senescence inducer hierarchically leads to selective pericentromeric dismantling through the downregulation of TRF2.  相似文献   

4.
Loss of heterochromatin has been implicated as a cause of pre-mature aging and age-associated decline in organ functions in mammals; however, the specific cell types and gene loci affected by this type of epigenetic change have remained unclear. To address this knowledge gap, we probed chromatin accessibility at single-cell resolution in the brains, hearts, skeletal muscles, and bone marrows from young, middle-aged, and old mice, and assessed age-associated changes at 353,126 candidate cis-regulatory elements (cCREs) across 32 major cell types. Unexpectedly, we detected increased chromatin accessibility within specific heterochromatin domains in old mouse excitatory neurons. The gain of chromatin accessibility at these genomic loci was accompanied by the cell-type-specific loss of heterochromatin and activation of LINE1 elements. Immunostaining further confirmed the loss of the heterochromatin mark H3K9me3 in the excitatory neurons but not in inhibitory neurons or glial cells. Our results reveal the cell-type-specific changes in chromatin landscapes in old mice and shed light on the scope of heterochromatin loss in mammalian aging.Subject terms: Histone post-translational modifications, Gene silencing  相似文献   

5.
6.
Hutchinson–Gilford progeria is a premature aging syndrome caused by a truncated form of lamin A called progerin. Progerin expression results in a variety of cellular defects including heterochromatin loss, DNA damage, impaired proliferation and premature senescence. It remains unclear how these different progerin‐induced phenotypes are temporally and mechanistically linked. To address these questions, we use a doxycycline‐inducible system to restrict progerin expression to different stages of the cell cycle. We find that progerin expression leads to rapid and widespread loss of heterochromatin in G1‐arrested cells, without causing DNA damage. In contrast, progerin triggers DNA damage exclusively during late stages of DNA replication, when heterochromatin is normally replicated, and preferentially in cells that have lost heterochromatin. Importantly, removal of progerin from G1‐arrested cells restores heterochromatin levels and results in no permanent proliferative impediment. Taken together, these results delineate the chain of events that starts with progerin expression and ultimately results in premature senescence. Moreover, they provide a proof of principle that removal of progerin from quiescent cells restores heterochromatin levels and their proliferative capacity to normal levels.  相似文献   

7.
The aging process results in significant epigenetic changes at all levels of chromatin and DNA organization. These include reduced global heterochromatin, nucleosome remodeling and loss, changes in histone marks, global DNA hypomethylation with CpG island hypermethylation, and the relocalization of chromatin modifying factors. Exactly how and why these changes occur is not fully understood, but evidence that these epigenetic changes affect longevity and may cause aging, is growing. Excitingly, new studies show that age-related epigenetic changes can be reversed with interventions such as cyclic expression of the Yamanaka reprogramming factors. This review presents a summary of epigenetic changes that occur in aging, highlights studies indicating that epigenetic changes may contribute to the aging process and outlines the current state of research into interventions to reprogram age-related epigenetic changes.  相似文献   

8.
The involvement of the nuclear envelope in the modulation of chromatin organization is strongly suggested by the increasing number of human diseases due to mutations of nuclear envelope proteins. A common feature of these diseases, named laminopathies, is the occurrence of major chromatin defects. We previously reported that cells from laminopathic patients show an altered nuclear profile, and loss or detachment of heterochromatin from the nuclear envelope. Recent evidence indicates that processing of the lamin A precursor is altered in laminopathies featuring pre-mature aging and/or lipodystrophy phenotype. In these cases, pre-lamin A is accumulated in the nucleus and heterochromatin is severely disorganized. Here we report evidence indicating that pre-lamin A is mis-localized in the nuclei of Emery-Dreifuss muscular dystrophy fibroblasts, either bearing lamin A/C or emerin mutations. Abnormal pre-lamin A-containing structures are formed following treatment with a farnesyl-transferase inhibitor, a drug that causes accumulation of pre-lamin A. Pre-lamin A-labeled structures co-localize with heterochromatin clumps. These data indicate that in almost all laminopathies the expression of the mutant lamin A precursor disrupts the organization of heterochromatin domains. Our results further show that the absence of emerin expression alters the distribution of pre-lamin A and of heterochromatin areas, suggesting a major involvement of emerin in pre-lamin A-mediated mechanisms of chromatin remodeling.  相似文献   

9.
Edelman JR  Lin YJ 《Cytobios》2000,101(398):173-185
Previous investigations of cells undergoing rapid division revealed the presence of heterochromatic 'dots' in chromosomes as well as numerous chromocentres in interphase nuclei. Such structures were seen in human embryonic cells, as well as cells from organisms capable of regeneration, and cells from various malignancies. Cells with a reduced capacity for reproduction were found to be virtually devoid of nuclear chromocentres and chromosome dots after incubation in phosphate buffer at high temperature. The lack of heterochromatin in such cells (Werner's syndrome) thereby explained their reduced capacity for cell division and the resultant rapid rate of aging in individuals afflicted. Re-examination of such slides containing these cells revealed that chromocentres and chromosome dots were present initially, but the incubation process resulted in a 'sloughing-off' of such structures. The incubation process left these heterochromatic structures intact in malignant and control cells, inferring a link between cell proliferation and stable intact heterochromatin. These findings implicate heterochromatin as the object of the purported chromosomal instability factor characteristic of Werner's syndrome. The loss of heterochromatin did not result in chromosome breakage, suggesting that heterochromatin may not be an integral part of chromosome structure, but rather a surface feature or covering.  相似文献   

10.
11.
12.
13.
14.
The study of Hutchinson–Gilford progeria syndrome (HGPS) has provided important clues to decipher mechanisms underlying aging. Progerin, a mutant lamin A, disrupts nuclear envelope structure/function, with further impairment of multiple processes that culminate in senescence. Here, we demonstrate that the nuclear protein export pathway is exacerbated in HGPS, due to progerin‐driven overexpression of CRM1, thereby disturbing nucleocytoplasmic partitioning of CRM1‐target proteins. Enhanced nuclear export is central in HGPS, since pharmacological inhibition of CRM1 alleviates all aging hallmarks analyzed, including senescent cellular morphology, lamin B1 downregulation, loss of heterochromatin, nuclear morphology defects, and expanded nucleoli. Exogenous overexpression of CRM1 on the other hand recapitulates the HGPS cellular phenotype in normal fibroblasts. CRM1 levels/activity increases with age in fibroblasts from healthy donors, indicating that altered nuclear export is a common hallmark of pathological and physiological aging. Collectively, our findings provide novel insights into HGPS pathophysiology, identifying CRM1 as potential therapeutic target in HGPS.  相似文献   

15.
Aging inevitably leads to reduced immune function, leaving the elderly more susceptible to infections, less able to respond to pathogen challenges, and less responsive to preventative vaccinations. No cell type is exempt from the ravages of age, and extensive studies have found age‐related alterations in the frequencies and functions of both stem and progenitor cells, as well as effector cells of both the innate and adaptive immune systems. The intrinsic functional reduction in immune competence is also associated with low‐grade chronic inflammation, termed “inflamm‐aging,” which further perpetuates immune dysfunction. While many of these age‐related cellular changes are well characterized, understanding the molecular changes that underpin the functional decline has proven more difficult. Changes in chromatin are increasingly appreciated as a causative mechanism of cellular and organismal aging across species. These changes include increased genomic instability through loss of heterochromatin and increased DNA damage, telomere attrition, and epigenetic alterations. In this review, we discuss the connections between chromatin, immunocompetence, and the loss of function associated with mammalian immune aging. Through understanding the molecular events which underpin the phenotypic changes observed in the aged immune system, it is hoped that the aged immune system can be restored to provide youthful immunity once more.  相似文献   

16.
Normally, meiotic crossovers in conjunction with sister-chromatid cohesion establish a physical connection between homologs that is required for their accurate segregation during the first meiotic division. However, in some organisms an alternative mechanism ensures the proper segregation of bivalents that fail to recombine. In Drosophila oocytes, accurate segregation of achiasmate homologs depends on pairing that is mediated by their centromere-proximal heterochromatin. Our previous work uncovered an unexpected link between sister-chromatid cohesion and the fidelity of achiasmate segregation when Drosophila oocytes are experimentally aged. Here we show that a weak mutation in the meiotic cohesion protein ORD coupled with a reduction in centromere-proximal heterochromatin causes achiasmate chromosomes to missegregate with increased frequency when oocytes undergo aging. If ORD activity is more severely disrupted, achiasmate chromosomes with the normal amount of pericentric heterochromatin exhibit increased nondisjunction when oocytes age. Significantly, even in the absence of aging, a weak ord allele reduces heterochromatin-mediated pairing of achiasmate chromosomes. Our data suggest that sister-chromatid cohesion proteins not only maintain the association of chiasmate homologs but also play a role in promoting the physical association of achiasmate homologs in Drosophila oocytes. In addition, our data support the model that deterioration of meiotic cohesion during the aging process compromises the segregation of achiasmate as well as chiasmate bivalents.  相似文献   

17.
18.
Leaves of Zea mays L. were selected at a young stage when theyhad accumulated about two-thirds of their maximum chlorophyll,at a mature stage when approximately full dimensions and maximumchlorophyll levels were attained, and following pollen shedwhen lower leaves were dying from the tip. Data show a lossof one-fourth of the nuclear DNA, no effect of aging on eu-and heterochromatin levels and a marked decline in the guanine(G) and cytosine (C) percentages. Although DNA levels mightbe under hormonal control, it is not clear that the loss detectedwould be physiologically influential in aging sequences. Yetthis decline preceded those of leaf nitrogen and chlorophyll. (Received July 7, 1983; Accepted November 23, 1983)  相似文献   

19.
20.
Edelman JR  Lin YJ 《Cytobios》2001,106(413):171-191
The phenomenon of sister chromatid exchange has remained an enigma in that the actual mechanism for its formation has never been elucidated. It has long been suspected that the process involves some form of breakage and rejoining of DNA, but that hypothesis has never been proved. Recent work in this laboratory using cells from a premature aging disorder (Werner's syndrome) has promulgated the hypothesis that heterochromatin may not be an integral structure of chromosomes, but rather serves as a surface feature or covering. Furthermore, heterochromatin in Werner's syndrome chromosomes was found to be unstable and easily sloughed-off the chromosome surface. In this investigation evidence is presented which shows that incorporation of bromodeoxyuridine into DNA causes instability in the purported heterochromatin covering, resulting in translocation of segments of heterochromatin from the unifilarly-substituted chromatid to the bifilarly-substituted sister chromatid. Such translocation may represent the long-elusive mechanism of sister chromatid exchange formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号