首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
2.
3.
RAS is regulated by the let-7 microRNA family   总被引:131,自引:0,他引:131  
MicroRNAs (miRNAs) are regulatory RNAs found in multicellular eukaryotes, including humans, where they are implicated in cancer. The let-7 miRNA times seam cell terminal differentiation in C. elegans. Here we show that the let-7 family negatively regulates let-60/RAS. Loss of let-60/RAS suppresses let-7, and the let-60/RAS 3'UTR contains multiple let-7 complementary sites (LCSs), restricting reporter gene expression in a let-7-dependent manner. mir-84, a let-7 family member, is largely absent in vulval precursor cell P6.p at the time that let-60/RAS specifies the 1 degrees vulval fate in that cell, and mir-84 overexpression suppresses the multivulva phenotype of activating let-60/RAS mutations. The 3'UTRs of the human RAS genes contain multiple LCSs, allowing let-7 to regulate RAS expression. let-7 expression is lower in lung tumors than in normal lung tissue, while RAS protein is significantly higher in lung tumors, providing a possible mechanism for let-7 in cancer.  相似文献   

4.
5.
Multidrug resistance (MDR) has become the major cause of failure chemotherapy for leukemia and high mortality of leukemia. The study aimed to investigate whether the let-7f mediate the Adriamycin (ADR) resistance of leukemia, and to explore the potential molecular mechanism. Cell proliferation was examined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and the soft agar clone formation assay. Flow cytometry was performed to detected cell cycle and apoptosis. The targeted regulationship was analyzed by dual-luciferase assay. Real-time polymerase chain reaction and Western blot were used to measure the expressions of let-7f, ABCC5, ABCC10, cell cycle-related proteins, and apoptosis-related proteins. The xenograft mouse model was used to conduct the tumor formation assay in vivo. The results demonstrated that the expression of let-7f was lower in multidrug-resistant K562/A02 cell lines compared to that in K562, while ABCC5 and ABCC10 were upregulated. Overexpression of let-7f in K562/A02 cell lines downregulated the ABCC5 and ABCC10 expression, enhanced cell sensitivity to ADR, promoted cell apoptosis, and inhibited cell proliferation. let-7f was proved to negatively regulate ABCC5 and ABCC10. Tumor formation assay further determined that let-7f overexpression increased sensitivity to ADR. Taken together, the let-7f downregulation induced the ADR resistance of leukemia by upregulating ABCC5 and ABCC10 expression. Our study provided a novel perspective to study the mechanism of MDR and a new target for the reversal of MDR.  相似文献   

6.
7.
In insects, 20-hydroxyecdysone (20E) limits systemic growth by triggering developmental transitions. Previous studies have shown that 20E-induced let-7 exhibits crosstalk with the cell cycle. Here, we examined the underlying molecular mechanisms and physiological functions of 20E-induced let-7 in the fat body, an organ for energy storage and nutrient mobilization which plays a critical role in the larval growth. First, the overexpression of let-7 decreased the body size and led to the reduction of both nucleolus and cell sizes in the larval fat body. In contrast, the overexpression of let-7-Sponge increased the nucleolus and cell sizes. Moreover, we found that cdc7, encoding a conserved protein kinase that controls the endocycle, is a target of let-7. Notably, the mutation of cdc7 in the fat body resulted in growth defects. Overall, our findings revealed a novel role of let-7 in the control of endoreduplication-related growth during larval-prepupal transition in Drosophila.  相似文献   

8.
9.
MicroRNAs have been increasingly implicated in human cancer and interest has grown about the potential to use microRNAs to combat cancer. Lung cancer is the most prevalent form of cancer worldwide and lacks effective therapies. Here we have used both in vitro and in vivo approaches to show that the let-7 microRNA directly represses cancer growth in the lung. We find that let-7 inhibits the growth of multiple human lung cancer cell lines in culture, as well as the growth of lung cancer cell xenografts in immunodeficient mice. Using an established orthotopic mouse lung cancer model, we show that intranasal let-7 administration reduces tumor formation in vivo in the lungs of animals expressing a G12D activating mutation for the K-ras oncogene. These findings provide direct evidence that let-7 acts as a tumor suppressor gene in the lung and indicate that this miRNA may be useful as a novel therapeutic agent in lung cancer.  相似文献   

10.
11.
12.
MicroRNAs (miRNAs) have attracted attention because of their key regulatory functions in many biological events, including differentiation and tumorigenesis. Recent studies have reported the existence of a reciprocal regulatory loop between the family of let-7 miRNAs and an RNA-binding protein, Lin28, both of which have been documented for their important roles during cell differentiation. Hence, using bipotent K562 human leukemia cells and human CD34+ hematopoietic progenitor cells as research models, we demonstrate that let-7 and Lin28 have contrary roles in megakaryocytic (MK) differentiation with a dynamic balance; expression of miR-181 is capable of effectively repressing Lin28 expression, disrupting the Lin28-let-7 reciprocal regulatory loop, upregulating let-7, and eventually promoting MK differentiation. However, miR-181 lacks a significant effect on hemin-induced erythrocyte differentiation. These results demonstrate that miR-181 can function as a 'molecular switch' during hematopoietic lineage progression specific to MK differentiation, thus providing insight into future development of miRNA-oriented therapeutics.  相似文献   

13.
MicroRNAs are short, single-stranded RNAs that arise from a transient precursor duplex. We have identified a novel activity in HeLa cell extracts that can unwind the let-7 microRNA duplex. Using partially purified material, we have shown that microRNA helicase activity requires ATP and has a native molecular mass of approximately 68 kDa. Affinity purification of the unwinding activity revealed co-purification of P68 RNA helicase. Importantly, recombinant P68 RNA helicase was sufficient to unwind the let-7 duplex. Moreover, like its native homolog, P68 RNA helicase did not unwind an analogous small interfering RNA duplex. We further showed that knockdown of P68 inhibited let-7 microRNA function. From our data, we conclude that P68 RNA helicase is an essential component of the let-7 microRNA pathway, and in conjunction with other factors, it may play a role in the loading of let-7 microRNA into the silencing complex.  相似文献   

14.
15.
G protein-coupled receptors (GPCRs) are involved in most physiological processes, many of them being engaged in fully differentiated cells. These receptors couple to transducers of their own, primarily G proteins and β-arrestins, which launch intracellular signalling cascades. Some of these signalling events regulate the translational machinery to fine-tune general cell metabolism or to alter protein expression pattern. Though extensively documented for tyrosine kinase receptors, translational regulation by GPCRs is still poorly appreciated. The objective of this review paper is to address the following questions: i) is there a “GPCR signature” impacting on the translational machinery, and ultimately on the type of mRNA translated? ii) are the regulatory networks involved similar as those utilized by tyrosine kinase receptors? In particular, we will discuss the specific features of translational control mediated by GPCRs and highlight the intrinsic properties of GPCRs these mechanisms could rely on.  相似文献   

16.
17.
18.
19.
The lin-12/Notch signaling pathway is conserved from worms to humans and is a master regulator of metazoan development. Here, we demonstrate that lin-12/Notch gain-of-function (gf) animals display precocious alae at the L4 larval stage with a significant increase in let-7 expression levels. Furthermore, lin-12(gf) animals display a precocious and higher level of let-7 gfp transgene expression in seam cells at L3 stage. Interestingly, lin-12(gf) mutant rescued the lethal phenotype of let-7 mutants similar to other known heterochronic mutants. We propose that lin-12/Notch signaling pathway functions in late developmental timing, upstream of or in parallel to the let-7 heterochronic pathway. Importantly, the human microRNA let-7a was also upregulated in various human cell lines in response to Notch1 activation, suggesting an evolutionarily conserved cross-talk between let-7 and the canonical lin-12/Notch signaling pathway.  相似文献   

20.
miRNA let-7e is involved in stem cell differentiation, and metalloproteinases are among its potential target genes. We hypothesized that the inhibitory action of let-7e on regulation of MMP9 expression could represent a crucial mechanism during differentiation of adipose-derived stem cells (ASCs). ASCs were differentiated with all-trans retinoic acid (ATRA) to promote differentiation, and the effect of let-7 silencing during differentiation was tested. Results indicate that ASCs cultured with ATRA differentiated into cells of the epithelial lineage. We found that ASCs cultured with ATRA or transfected with miRNA let-7e expressed epithelial markers such as cytokeratin-18 and early renal organogenesis markers such as Pax2, Wt1, Wnt4 and megalin. Conversely, the specific knockdown of miRNA let-7e in ASCs significantly decreased the expression of these genes, indicating its vital role during the differentiation process. Using luciferase reporter assays, we also showed that MMP9 is a direct target of miRNA let-7e. Thus, our results suggest that miRNA let-7e acts as a matrix metalloproteinase-9 (MMP9) inhibitor and differentiation inducer in ASCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号