首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Primary microcephaly is a genetic disorder in which an affected individual has a head circumference >3 SDs below the age- and sex-related mean. A small but apparently normally formed brain is the reason for the reduced head circumference, and, probably because of this, all affected individuals are mentally retarded. The condition is genetically heterogeneous, and four loci have already been identified. We now report a fifth locus, MCPH5, which is an 8-cM region mapping to chromosome 1q31, defined by the markers GATA135F02 and D1S1678.  相似文献   

2.
3.
Primary autosomal recessive microcephaly is a clinical diagnosis of exclusion in an individual with a head circumference >/=4 SDs below the expected age-and-sex mean. There is associated moderate mental retardation, and neuroimaging shows a small but structurally normal cerebral cortex. The inheritance pattern in the majority of cases is considered to be autosomal recessive. Although genetic heterogeneity for this clinical phenotype had been expected, this has only recently been demonstrated, with the mapping of two loci for autosomal recessive primary microcephaly: MCPH1 at 8p and MCPH2 at 19q. We have studied a large multiaffected consanguineous pedigree, using a whole-genome search, and have identified a third locus, MCPH3 at 9q34. The minimal critical region is approximately 12 cM, being defined by the markers cen-D9S1872-D9S159-tel, with a maximum two-point LOD score of 3.76 (recombination fraction 0) observed for the marker D9S290.  相似文献   

4.
5.
We report a novel autosomal recessive disorder characterized by premature chromosome condensation in the early G2 phase. It was observed in two siblings, from consanguineous parents, affected with microcephaly, growth retardation, and severe mental retardation. Chromosome analysis showed a high frequency of prophase-like cells (>10%) in lymphocytes, fibroblasts, and lymphoblast cell lines with an otherwise normal karyotype. (3)H-thymidine-pulse labeling and autoradiography showed that, 2 h after the pulse, 28%-35% of the prophases were labeled, compared with 9%-11% in healthy control subjects, indicating that the phenomenon is due to premature chromosome condensation. Flow cytometry studies demonstrate that the entire cell cycle is not prolonged, compared with that in healthy control subjects, and compartment sizes did not differ from those in healthy control subjects. No increased reaction of the cells to X-irradiation or treatments with the clastogens bleomycin and mitomycin C was observed, in contrast to results in the cell-cycle mutants ataxia telangiectasia and Fanconi anemia. The rates of sister chromatid exchanges and the mitotic nondisjunction rates were inconspicuous. Premature entry of cells into mitosis suggests that a gene involved in cell-cycle regulation is mutated in these siblings.  相似文献   

6.
Primary (or "true") microcephaly is inherited as an autosomal recessive trait and is thought to be genetically heterogeneous. Using autozygosity mapping, we have identified a genetic locus (MCPH1) for primary microcephaly, at chromosome 8p22-pter, in two consanguineous families of Pakistani origin. Our results indicate that the gene lies within a 13-cM region between the markers D8S1824 and D8S1825 (maximum multipoint LOD score of 8.1 at D8S277). In addition, we have demonstrated the genetic heterogeneity of this condition by analyzing a total of nine consanguineous families with primary microcephaly.  相似文献   

7.
Chromosome length controls mitotic chromosome segregation in yeast   总被引:37,自引:0,他引:37  
A W Murray  N P Schultes  J W Szostak 《Cell》1986,45(4):529-536
We have examined the effect of physical length on the mitotic segregation of artificial chromosomes and fragments of natural yeast chromosomes. Increasing the length of artificial chromosomes decreases the rate at which they are lost during mitosis. We have made fragments of chromosome III by integrating new telomeres at different positions along the length of the chromosome. Chromosome fragments of 42 and 72 kb behave like artificial chromosomes: they are lost in mitosis much more frequently than natural chromosomes. In contrast, a chromosome fragment of 150 kb is as mitotically stable as the full-length chromosome from which it is derived. The structural instability of a short dicentric artificial chromosome demonstrates that, although short artificial chromosomes segregate poorly in mitosis, they do attach to the mitotic spindle. We discuss these results in the context of a model in which chromosome segregation is directed by the intercatenation of the segregating DNA molecules.  相似文献   

8.
Murine double minute 2 (MDM2) binding protein (MTBP) has been implicated in tumor cell proliferation, but the underlying mechanisms remain unclear. The results of MTBP expression analysis during cell cycle progression demonstrated that MTBP protein was rapidly degraded during mitosis. Immunofluorescence studies revealed that a portion of MTBP was localized at the kinetochores during prometaphase. MTBP overexpression delayed mitotic progression from nuclear envelope breakdown (NEB) to anaphase onset and induced abnormal chromosome segregation such as lagging chromosomes, chromosome bridges, and multipolar chromosome segregation. Conversely, MTBP downmodulation caused an abbreviated metaphase and insufficient mitotic arrest, resulting in abnormal chromosome segregation, aneuploidy, decreased cell proliferation, senescence, and cell death, similar to that of Mad2 (mitotic arrest-deficient 2) downmodulation. Furthermore, MTBP downmodulation inhibited the accumulation of Mad1 and Mad2, but not BubR1 (budding uninhibited by benzimidazoles related 1), on the kinetochores, whereas MTBP overexpression inhibited the release of Mad2 from the metaphase kinetochores. These results may imply that MTBP has an important role in recruiting and/or retaining the Mad1/Mad2 complex at the kinetochores during prometaphase, but its degradation is required for silencing the mitotic checkpoint. Together, this study indicates that MTBP has a crucial role in proper mitotic progression and faithful chromosome segregation, providing new insights into regulation of the mitotic checkpoint.  相似文献   

9.
Cytoplasmic dynein is a large minus-end-directed microtubule motor complex, involved in many different cellular processes including intracellular trafficking, organelle positioning, and microtubule organization. Furthermore, dynein plays essential roles during cell division where it is implicated in multiple processes including centrosome separation, chromosome movements, spindle organization, spindle positioning, and mitotic checkpoint silencing. How is a single motor able to fulfill this large array of functions and how are these activities temporally and spatially regulated? The answer lies in the unique composition of the dynein motor and in the interactions it makes with multiple regulatory proteins that define the time and place where dynein becomes active. Here, we will focus on the different mitotic processes that dynein is involved in, and how its regulatory proteins act to support dynein. Although dynein is highly conserved amongst eukaryotes (with the exception of plants), there is significant variability in the cellular processes that depend on dynein in different species. In this review, we concentrate on the functions of cytoplasmic dynein in mammals but will also refer to data obtained in other model organisms that have contributed to our understanding of dynein function in higher eukaryotes.  相似文献   

10.
Acro-coxo-mesomelic dwarfism seems to be a new autosomal recessive entity, one compatible with survival. This severe, dysmorphic condition is characterized by shortening of median and distal segments of the limbs without anomalies of the spine. Other malformations are clubhand and foot, short malformed fingers, and reduced articular mobility of elbows and hips with radial and femoral dislocations. Skeletal X-rays show the following: delayed bone age; mesomelic shortening of the limbs with cubitus brevus, radius curvus, and mostly fibula agenesis; severe acromelic deformities with clinodactyly of the IIIrd, IVth, and Vth digits and brachyrhizophalangia of the IInd and Vth digits. Brachymetacarpia is diffuse, with a "squashed candle" appearance. The IInd metacarpals and the proximal phalanx of the Vth digits have a peculiar "butterfly wings" appearance. The toes are shortened with a "drumstick" appearance and phalangeal hypoplasia, mostly of the midphalanges; hip dislocation and dysplasia (coxomelic), with hypoplasia of the femoral head and a coxa vara cylindric neck.  相似文献   

11.
Primary microcephaly is thought to result from genetic defects of the developmental program that generates large brain hemispheres in humans. Autosomal recessive inheritance is likely in most familial cases, and four loci were recently mapped by homozygosity. We report homozygosity mapping of a new locus, MCPH5, with a maximum multipoint LOD score of 3.51 at marker D1S1723, in a family of Turkish origin. The minimal critical region spans 11.4 cM between markers D1S384 and D1S2655, at 1q25-q32, and encompasses the cytogenetic breakpoints of chromosomal aberrations previously reported in unrelated patients with microcephaly.  相似文献   

12.
A new mutant of Tribolium confusum Jacquelin duVal (Coleoptera: Tenebrionidae), extra-large (designated xl), was isolated in mating competition tests with red-eye (re) and wild-type (+). Crosses showed that it was autosomal recessive gene with subvital effects. The pupal weights averaged 6.1 and 7.3 mg for males and females, respectively, about twice the weights of the ancestral wild-type. The generation time (egg to adult) was approximately 8 to 9 weeks compared with about 4 weeks for the wild-type. This increase resulted from a lengthening of the larval stage since the durations of the egg and pupal stages were within the ranges of the wild-type. Mean longivity of xl males and females was reduced to 8.5 and 6.0 weeks, respectively at 26.7 +/- 1 degree C and 60% RH.  相似文献   

13.
ABSTRACT: Assembly of a bipolar mitotic spindle is essential to ensure accurate chromosome segregation and prevent aneuploidy, and severe mitotic spindle defects are typically associated with cell death. Recent studies have shown that mitotic spindles with initial geometric defects can undergo specific rearrangements so the cell can complete mitosis with a bipolar spindle and undergo bipolar chromosome segregation, thus preventing the risk of cell death associated with abnormal spindle structure. Although this may appear as an advantageous strategy, transient defects in spindle geometry may be even more threatening to a cell population or organism than permanent spindle defects. Indeed, transient spindle geometry defects cause high rates of chromosome mis-segregation and aneuploidy. In this review, we summarize our current knowledge on two specific types of transient spindle geometry defects (transient multipolarity and incomplete spindle low separation) and describe how these mechanisms cause chromosome mis-segregation and aneuploidy. Finally, we discuss how these transient spindle defects may specifically contribute to the chromosomal instability observed in cancer cells.  相似文献   

14.
PICH is an SNF2-family DNA translocase that appears to play a role specifically in mitosis. Characterization of PICH in human cells led to the initial discovery of “ultra-fine DNA bridges” (UFBs) that connect the 2 segregating DNA masses in the anaphase of mitosis. These bridge structures, which arise from specific regions of the genome, are a normal feature of anaphase but had escaped detection previously because they do not stain with commonly used DNA dyes. Nevertheless, UFBs are important for genome maintenance because defects in UFB resolution can lead to cytokinesis failure. We reported recently that PICH stimulates the unlinking (decatenation) of entangled DNA by Topoisomerase IIα (Topo IIα), and is important for the resolution of UFBs. We also demonstrated that PICH and Topo IIα co-localize at the rDNA (rDNA). In this Extra View article, we discuss the mitotic roles of PICH and explore further the role of PICH in the timely segregation of the rDNA locus.  相似文献   

15.
16.
We have mapped the locus for lamellar ichthyosis (LI), an autosomal recessive skin disease characterized by abnormal cornification of the epidermis. Analysis using both inbred and outbred families manifesting severe LI showed complete linkage to several markers within a 9.3-cM region on chromosome 14q11. Affected individuals in inbred families were also found to have striking homozygosity for markers in this region. Linkage-based genetic counseling and prenatal diagnosis is now available for informative at-risk families. Several transcribed genes have been mapped to the chromosome 14 region containing the LI gene. The transglutaminase 1 gene (TGM1), which encodes one of the enzymes responsible for cross-linking epidermal proteins during formation of the stratum corneum, maps to this interval. The TGM1 locus was completely linked to LI (Z = 9.11), suggesting that TGM1 is a good candidate for further investigation of this disorder. The genes for four serine proteases also map to this region but are expressed only in hematopoietic or mast cells, making them less likely candidates.  相似文献   

17.
Hereditary spastic paraplegia is a genetically and phenotypically heterogeneous disorder. Both pure and complicated forms have been described, with autosomal dominant, autosomal recessive, and X-linked inheritance. Various loci (SPG1-SPG6) associated with this disorder have been mapped. Here, we report linkage analysis of a large consanguineous family affected with autosomal recessive spastic paraplegia with age at onset of 25-42 years. Linkage analysis of this family excluded all previously described spastic paraplegia loci. A genomewide linkage analysis showed evidence of linkage to chromosome 16q24.3, with markers D16S413 (maximum LOD score 3.37 at recombination fraction [theta] of .00) and D16S303 (maximum LOD score 3.74 at straight theta=.00). Multipoint analysis localized the disease gene in the most telomeric region, with a LOD score of 4.2. These data indicate the presence of a new locus linked to pure recessive spastic paraplegia, on chromosome 16q24.3, within a candidate region of 6 cM.  相似文献   

18.
Linkage analysis in French-Canadian families with vitamin D dependency type I (VDD1) demonstrated that the gene responsible for the disease is linked to polymorphic RFLP markers in the 12q14 region. We studied 76 subjects in 14 sibships which included 17 affected individuals and 17 obligate heterozygotes. Significant results for linkage were obtained with the D12S17 locus at the male recombination fraction (theta m) .018 (Z[theta m theta f] = 3.20) and with D126 at (theta m = .025 (Z[theta m theta f] = 3.07). Multipoint linkage analysis and studies of haplotypes and recombinants strongly suggest the localization of the VDD1 locus between the collagen type II alpha 1 (COL2A1) locus and clustered loci D12S14, D12S17, and D12S6, which segregate as a three-marker haplotype. Linkage disequilibrium between VDD1 and this three-marker haplotype supports the notion of a founder effect in the studied population. The current status of the localization of the disease allows for carrier detection in the families at risk.  相似文献   

19.

Background  

Autosomal recessive primary microcephaly is a disorder of neurogenic mitosis that causes reduction in brain size. It is a rare heterogeneous condition with seven causative genes reported to date. Mutations in WD repeat protein 62 are associated with autosomal recessive primary microcephaly with cortical malformations. This study was initiated to screen WDR62 mutations in four consanguineous Pakistani families with autosomal recessive primary microcephaly.  相似文献   

20.
Monopolar spindle 1 (Mps1) is essential for the spindle assembly checkpoint (SAC), which prevents anaphase onset in the presence of misaligned chromosomes. Moreover, Mps1 kinase contributes in a SAC-independent manner to the correction of erroneous initial attachments of chromosomes to the spindle. Our characterization of the Drosophila homologue reveals yet another SAC-independent role. As in yeast, modest overexpression of Drosophila Mps1 is sufficient to delay progression through mitosis during metaphase, even though chromosome congression and metaphase alignment do not appear to be affected. This delay in metaphase depends on the SAC component Mad2. Although Mps1 overexpression in mad2 mutants no longer causes a metaphase delay, it perturbs anaphase. Sister kinetochores barely move apart toward spindle poles. However, kinetochore movements can be restored experimentally by separase-independent resolution of sister chromatid cohesion. We propose therefore that Mps1 inhibits sister chromatid separation in a SAC-independent manner. Moreover, we report unexpected results concerning the requirement of Mps1 dimerization and kinase activity for its kinetochore localization in Drosophila. These findings further expand Mps1's significance for faithful mitotic chromosome segregation and emphasize the importance of its careful regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号