首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study we find that the function of BRCA1 inhibits the microtubule nucleation function of centrosomes. In particular, cells in early S phase have quiescent centrosomes due to BRCA1 activity, which inhibits the association of gamma-tubulin with centrosomes. We find that modification of either of two specific lysine residues (Lys-48 and Lys-344) of gamma-tubulin, a known substrate for BRCA1-dependent ubiquitination activity, led to centrosome hyperactivity. Interestingly, mutation of gamma-tubulin lysine 344 had a minimal effect on centrosome number but a profound effect on microtubule nucleation function, indicating that the processes regulating centrosome duplication and microtubule nucleation are distinct. Using an in vitro aster formation assay, we found that BRCA1-dependent ubiquitination activity directly inhibits microtubule nucleation by centrosomes. Mutant BRCA1 protein that was inactive as a ubiquitin ligase did not inhibit aster formation by the centrosome. Further, a BRCA1 carboxy-terminal truncation mutant that was an active ubiquitin ligase lacked domains critical for the inhibition of centrosome function. These experiments reveal an important new functional assay regulated by the BRCA1-dependent ubiquitin ligase, and the results suggest that the loss of this BRCA1 activity could cause the centrosome hypertrophy and subsequent aneuploidy typically found in breast cancers.  相似文献   

2.
BRCA1 is a DNA damage response protein and functions in the nucleus to stimulate DNA repair and at the centrosome to inhibit centrosome overduplication in response to DNA damage. The loss or mutation of BRCA1 causes centrosome amplification and abnormal mitotic spindle assembly in breast cancer cells. The BRCA1-BARD1 heterodimer binds and ubiquitinates γ-tubulin to inhibit centrosome amplification and promote microtubule nucleation; however regulation of BRCA1 targeting and function at the centrosome is poorly understood. Here we show that both N and C termini of BRCA1 are required for its centrosomal localization and that BRCA1 moves to the centrosome independently of BARD1 and γ-tubulin. Mutations in the C-terminal phosphoprotein-binding BRCT domain of BRCA1 prevented localization to centrosomes. Photobleaching experiments identified dynamic (60%) and immobilized (40%) pools of ectopic BRCA1 at the centrosome, and these are regulated by the nuclear export receptor CRM1 (chromosome region maintenance 1) and BARD1. CRM1 mediates nuclear export of BRCA1, and mutation of the export sequence blocked BRCA1 regulation of centrosome amplification in irradiated cells. CRM1 binds to undimerized BRCA1 and is displaced by BARD1. Photobleaching assays implicate CRM1 in driving undimerized BRCA1 to the centrosome and revealed that when BRCA1 subsequently binds to BARD1, it is less well retained at centrosomes, suggesting a mechanism to accelerate BRCA1 release after formation of the active heterodimer. Moreover, Aurora A binding and phosphorylation of BRCA1 enhanced its centrosomal retention and regulation of centrosome amplification. Thus, CRM1, BARD1 and Aurora A promote the targeting and function of BRCA1 at centrosomes.  相似文献   

3.
DNA damage response (DDR) and the centrosome cycle are 2 of the most critical cellular processes affecting the genome stability in animal cells. Yet the cross-talks between DDR and the centrosome are poorly understood. Here we showed that deficiency of the breast cancer 1, early onset gene (BRCA1) induces centrosome amplification in non-stressed cells as previously reported while attenuating DNA damage-induced centrosome amplification (DDICA) in cells experiencing prolonged genotoxic stress. Mechanistically, the function of BRCA1 in promoting DDICA is through binding and recruiting polo-like kinase 1 (PLK1) to the centrosome. In a recent study, we showed that FancJ also suppresses centrosome amplification in non-stressed cells while promoting DDICA in both hydroxyurea and mitomycin C treated cells. FancJ is a key component of the BRCA1 B-complex. Here, we further demonstrated that, in coordination with BRCA1, FancJ promotes DDICA by recruiting both BRCA1 and PLK1 to the centrosome in the DNA damaged cells. Thus, we have uncovered a novel role of BRCA1 and FancJ in the regulation of DDICA. Dysregulation of DDR or centrosome cycle leads to aneuploidy, which is frequently seen in both solid and hematological cancers. BRCA1 and FancJ are known tumor suppressors and have well-recognized functions in DNA damage checkpoint and DNA repair. Together with our recent findings, we demonstrated here that BRCA1 and FancJ also play an important role in centrosome cycle especially in DDICA. DDICA is thought to be an alternative fail-safe mechanism to prevent cells experiencing severe DNA damage from becoming carcinogenic. Therefore, BRCA1 and FancJ are potential liaisons linking early DDR with the DDICA. We propose that together with their functions in DDR, the role of BRCA1 and FancJ in the activation of DDICA is also crucial for their tumor suppression functions in vivo.  相似文献   

4.
Proper centrosome duplication and spindle formation are crucial for prevention of chromosomal instability, and BRCA1 plays a role in this process. In this study, transient inhibition of BRCA1 function in cell lines derived from mammary tissue caused rapid amplification and fragmentation of centrosomes. Cell lines tested that were derived from nonmammary tissues did not amplify the centrosome number in this transient assay. We tested whether BRCA1 and its binding partner, BARD1, ubiquitinate centrosome proteins. Results showed that centrosome components, including gamma-tubulin, are ubiquitinated by BRCA1/BARD1 in vitro. The in vitro ubiquitination of gamma-tubulin was specific, and function of the carboxy terminus was necessary for this reaction; truncated BRCA1 did not ubiquitinate gamma-tubulin. BRCA1/BARD1 ubiquitinated lysines 48 and 344 of gamma-tubulin in vitro, and expression in cells of gamma-tubulin K48R caused a marked amplification of centrosomes. This result supports the notion that the modification of these lysines in living cells is critical in the maintenance of centrosome number. One of the key problems in understanding the biology of BRCA1 has been the identification of a specific target of BRCA1/BARD1 ubiquitination and its effect on mammary cell biology. The results of this study identify a ubiquitination target and suggest a biological impact important in the etiology of breast cancer.  相似文献   

5.
To find genes and proteins that collaborate with BRCA1 or BRCA2 in the pathogenesis of breast cancer, we used an informatics approach and found a candidate BRCA interactor, KIAA0101, to function like BRCA1 in exerting a powerful control over centrosome number. The effect of KIAA0101 on centrosomes is likely direct, as its depletion does not affect the cell cycle, KIAA0101 localizes to regions coincident with the centrosomes, and KIAA0101 binds to BRCA1. We analyzed whether KIAA0101 protein is overexpressed in breast cancer tumor samples in tissue microarrays, and we found that overexpression of KIAA0101 correlated with positive Ki67 staining, a biomarker associated with increased disease severity. Furthermore, overexpression of the KIAA0101 gene in breast tumors was found to be associated with significantly decreased survival time. This study identifies KIAA0101 as a protein important for breast tumorigenesis, and as this factor has been reported as a UV repair factor, it may link the UV damage response to centrosome control.  相似文献   

6.
BRCA1 is a major gatekeeper of genomic stability. Acting in multiple central processes like double-strand break repair, centrosome replication, and checkpoint control, BRCA1 participates in maintaining genomic integrity and protects the cell against genomic instability. Chromosomal instability (CIN) as part of genomic instability is an inherent characteristic of most solid tumors and is also involved in breast cancer development. In this study, we determined the extent of CIN in 32 breast cancer tumors of women with a BRCA1 germline mutation compared to 62 unselected breast cancers. We applied fluorescence in situ hybridization (FISH) with centromere-specific probes for the chromosomes 1, 7, 8, 10, 17, and X and locus-specific probes for 3q27 (BCL6), 5p15.2 (D5S23), 5q31 (EGR1), 10q23.3 (PTEN), and 14q32 (IGH@) on formalin-fixed paraffin-embedded tissue microarray sections. Our hypothesis of an increased level of CIN in BRCA1-associated breast cancer could not be confirmed by this approach. Surprisingly, we detected no significant difference in the extent of CIN in BRCA1-mutated versus sporadic tumors. The only exception was the CIN value for chromosome 1. Here, the extent of CIN was slightly higher in the group of sporadic tumors.  相似文献   

7.
8.
Germline mutations of the breast cancer associated gene 1 (BRCA1) predispose women to breast and ovarian cancers. BRCA1 is a large protein with multiple functional domains and interacts with numerous proteins that are involved in many important biological processes/pathways. Mounting evidence indicates that BRCA1 is involved in all phases of the cell cycle and regulates orderly events during cell cycle progression. BRCA1 deficiency, consequently causes abnormalities in the S-phase checkpoint, the G2/M checkpoint, the spindle checkpoint and centrosome duplication. The genetic instability caused by BRCA1 deficiency, however, also triggers cellular responses to DNA damage that blocks cell proliferation and induces apoptosis. Thus BRCA1 mutant cells cannot develop further into full-grown tumors unless this cellular defense is broken. Functional analysis of BRCA1 in cell cycle checkpoints, genome integrity, DNA damage response (DDR) and tumor evolution should benefit our understanding of the mechanisms underlying BRCA1 associated tumorigenesis, as well as the development of therapeutic approaches for this lethal disease.  相似文献   

9.
BRCA1 gene mutations are responsible for hereditary breast and ovarian cancers. In sporadic breast tumors, BRCA1 dysfunction or aberrant subcellular localization is thought to be common. BRCA1 is a nuclear-cytoplasm shuttling protein and the reason for cytoplasmic localization of BRCA1 in young breast cancer patients is not yet known. We have previously reported BRCA1 proteins unlike K109R and cancer-predisposing mutant C61G to bind Ubc9 and modulate ER-α turnover. In the present study, we have examined the consequences of altered Ubc9 binding and knockdown on the subcellular localization and growth inhibitory function of BRCA1 proteins. Our results using live imaging of YFP, GFP, RFP-tagged BRCA1, BRCA1a and BRCA1b proteins show enhanced cytoplasmic localization of K109 R and C61G mutant BRCA1 proteins in normal and cancer cells. Furthermore, down-regulation of Ubc9 in MCF-7 cells using Ubc9 siRNA resulted in enhanced cytoplasmic localization of BRCA1 protein and exclusive cytoplasmic retention of BRCA1a and BRCA1b proteins. These mutant BRCA1 proteins were transforming and impaired in their capacity to inhibit growth of MCF-7 and CAL51 breast cancer cells. Interestingly, cytoplasmic BRCA1a mutants showed more clonogenicity in soft agar and higher levels of expression of Ubc9 than parental MCF7 cells. This is the first report demonstrating the physiological link between cytoplasmic mislocalization of mutant BRCA1 proteins, loss of ER-α repression, loss of ubiquitin ligase activity and loss of growth suppression of BRCA1 proteins. Thus, binding of BRCA1 proteins to nuclear chaperone Ubc9 provides a novel mechanism for nuclear import and control of tumor growth.  相似文献   

10.
Germline alterations of the BRCA1 tumor suppressor gene have been implicated at least in half of familial breast cancers. Nevertheless, in sporadic breast cancer no mutation of this gene has been characterized to date. In sporadic breast tumors, other BRCA1 gene loss of function mechanisms, such as down-regulation of gene expression, have been suggested. In an effort to better understand the relationship between BRCA1 expression and malignant transformation, we have adapted the new real-time quantitative PCR method based on a 5' nuclease assay and the use of doubly labeled fluorescent TaqMan probes to quantify BRCA1 mRNA. We have compared expression of BRCA1 mRNA with or without exon 11 in the normal breast epithelial cell line MCF10a and in three cancer cell lines (MCF-7, MDA-MB231 and HBL100) by comparing two methods of quantification: the comparative C(T) and the standard curve. We found that the full length BRCA1 mRNA, which encodes the functional nuclear protein, was down-regulated in tumor cells when compared with MCF10a cells.  相似文献   

11.
BRCA1 is a tumor suppressor gene which is inactivated by mutation in familial breast and ovarian cancers. Over 300 different disease causing germ-line mutations have been described; 60% are unique to an individual family. This diversity and the large size of the gene lead us to search for a prescreening method for BRCA1 mutations. Since BRCA1 is a nuclear protein in normal cells, but reported by some authors to be cytoplasmic in breast tumor cells of patients with BRCA1 mutation, we evaluated immunohistochemistry as a prescreening technique to identify BRCA1 mutations in patients with familial presentation of breast cancer. Using a monoclonal antibody against the carboxy-terminal region of BRCA1, we performed immunohistochemistry on 18 tumor samples from patients with hereditary breast cancer. Cytoplasmic staining of BRCA1 was observed in 10 cases. Of the 18 tumors, 12 (66%) showed either BRCA mutation or BRCA1 accumulation or both, indicating that BRCA1 function might be lost in breast tumor cells not only through mutation, but also via abnormal cytoplasmic location. The immunohistochemical test used in this study would not be efficient as a pre-screening method of deleterious mutations, but it appeared useful to investigate tumor physiology.  相似文献   

12.
13.
BRCA2 is responsible for familial breast and ovarian cancer and has been linked to DNA repair and centrosome duplication. Here we analyzed the mechanism by which the centrosomal localization signal (CLS) of BRCA2 interacts with cytoplasmic dynein 1 to localize BRCA2 to the centrosome. In vitro pull-down assays demonstrated that BRCA2 directly binds to the cytoplasmic dynein 1 light intermediate chain 2. A dominant-negative HA-CLS-DsRed fusion protein, the depletion of dynein by siRNA, and the inactivation of dynein by EHNA, inhibited the localization of BRCA2 at centrosomes and caused the separation of centrosome pairs during the S-phase. The double depletion of BRCA2 and C-Nap1 caused a larger dispersion of centrosome distances than the silencing of C-Nap1. These results suggest that cytoplasmic dynein 1 binds to BRCA2 through the latter's CLS and BRCA2 mediates the cohesion between centrosomes during the S phase, potentially serving as a cell-cycle checkpoint.  相似文献   

14.
The BRCA1 and BRCA2 gene products are believed to play an important part in the onset and/or development of many sporadic mammary cancers. Recently, it has been reported that these two proteins contribute to a centrosome function which is believed to help maintain the integrity of the chromosome segregation process. This may mean a reduced level of the BRCA1 or BRCA2 protein in mammary cells will occasionally lead to nondisjunctional chromosomal loss or gain. We now report that spontaneous micronuclei arising from chromosome(s) which fail to be incorporated into the relevant daughter nuclei during mitosis tend to occur more frequently in BRCA1- or BRCA2-defective human cancer cells than in BRCA-positive cancer cells. Some cases of mammary carcinogenesis may therefore stem from the loss of integrity of chromosome segregation in cells which have a reduced capacity to express either BRCA1 or BRCA2.  相似文献   

15.
A recent study of breast cancer patients with and without BRCA1 gene mutations found significantly lower levels of VEGF in serum from patients with BRCA1 mutations (Tarnowski, B., Chudecka-Glaz, A., Gorski, B., and Rzepka-Gorska, I. (2004) Breast Cancer Res. Treat. 88, 287-288). Here, we describe a possible mechanistic explanation for this correlation. Because hypoxia in tumors stimulates VEGF expression and secretion we hypothesized that altered BRCA1 protein levels in breast tumors could affect hypoxia-stimulated VEGF promoter activity. This possibility was tested in cells transfected with various combinations of expression plasmids for BRCA1, BRCA1 specific inhibitory RNAs (BRCA1-siRNAs), HIF-1alpha, and a VEGF promoter-reporter and then incubated in normoxia (21%, O2) or hypoxia (0.1%, O2). As predicted, increased BRCA1 levels enhanced both hypoxia-stimulated VEGF promoter activity and the amounts of VEGF mRNA, as determined by semiquantitative RT-PCR and quantitative real time PCR. Using the ChIP assay, we discovered that BRCA1 could be recruited to the endogenous human VEGF promoter along with HIF-1alpha following hypoxia. An interaction between BRCA1 and HIF-1alpha was found in human breast cancer cells. We also found that hypoxia-stimulated VEGF promoter activity and secretion was reduced in cells containing reduced amounts of endogenous BRCA1 protein (obtained by transfecting with BRCA1 siRNAs). A mechanistic explanation for these effects is provided by our finding a reduced half-life and reduced accumulation of HIF-1alpha in hypoxic cells transfected with BRCA1-siRNAs and that proteasome inhibitors blocked these effects of BRCA1-siRNAs. Thus, our results suggest that normal amounts of BRCA1 function in hypoxia to regulate HIF-1alpha stability, probably by interacting with HIF-1alpha.  相似文献   

16.
Recent evidence indicates that BRCA1, a gene product associated with breast and ovarian cancer susceptibility, is an important component of the cellular response to DNA damage. Despite being expressed ubiquitously in adult tissues, germline mutations in BRCA1 predispose individuals to breast and ovarian tumors with only minor effects on the predisposition to cancer in other sites. The reason for this tissue specificity of BRCA1 carcinomas must be found if we are to understand fully why these tumors occur and to enable us to design efficient preventive and therapeutic regimens. Here I propose that tissue-specific rates of loss of heterozygosity in the BRCA1 locus could contribute to tissue specificity in tumor development.  相似文献   

17.
18.
BRCA1 phosphorylation by Aurora-A in the regulation of G2 to M transition   总被引:16,自引:0,他引:16  
Aurora-A/BTAK/STK15 localizes to the centrosome in the G(2)-M phase, and its kinase activity regulates the G(2) to M transition of the cell cycle. Previous studies have shown that the BRCA1 breast cancer tumor suppressor also localizes to the centrosome and that BRCA1 inactivation results in loss of the G(2)-M checkpoint. We demonstrate here that Aurora-A physically binds to and phosphorylates BRCA1. Biochemical analysis showed that BRCA1 amino acids 1314-1863 binds to Aurora-A. Site-directed mutagenesis indicated that Ser(308) of BRCA1 is phosphorylated by Aurora-A in vitro. Anti-phospho-specific antibodies against Ser(308) of BRCA1 demonstrated that Ser(308) is phosphorylated in vivo. Phosphorylation of Ser(308) increased in the early M phase when Aurora-A activity also increases; these effects could be abolished by ionizing radiation. Consistent with these observations, acute loss of Aurora-A by small interfering RNA resulted in reduced phosphorylation of BRCA1 Ser(308), and transient infection of adenovirus Aurora-A increased Ser(308) phosphorylation. Mutation of a single phosphorylation site of BRCA1 (S308N), when expressed in BRCA1-deficient mouse embryo fibroblasts, decreased the number of cells in the M phase to a degree similar to that with wild type BRCA1-mediated G(2) arrest induced by DNA damage. We propose that BRCA1 phosphorylation by Aurora-A plays a role in G(2) to M transition of cell cycle.  相似文献   

19.
20.
Over the past 20 years tremendous progress has been made in understanding the function of BRCA1 gene products. Yet one question still remains: why is mutation of BRCA1 typically associated with preferential development of breast and ovarian cancers and not tumors in other tissues? Here we discuss recent evidence documenting the effect of BRCA1-haploinsufficiency in different cells and tissues and synthesize a model for how mutations in a single BRCA1 allele in human cells might preferentially confer increased cancer risk in breast epithelial cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号