首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have examined highly purified osteoclasts that were generated in vitro from murine co-culture of marrow precursors with stromal support cells and have found evidence of activation of the MEK/ERK and AKT/NFkappaB survival pathways. Many mature marrow-derived osteoclasts survived for at least 48 h in culture whether or not they are maintained with stromal cells. Moreover, supplementing purified osteoclasts with RANKL and/or M-CSF had no impact on their survival pattern. In addition, spleen-derived osteoclasts generated with RANKL and M-CSF treatment exhibited a similar survival pattern. Blocking MEK, AKT, or NFkappaB activity resulted in apoptosis of many, but not all, of the osteoclasts in purified marrow-derived osteoclasts, marrow-derived osteoclasts co-cultured with stromal cells, and spleen-derived osteoclasts maintained with RANKL and M-CSF. These data support that both the MEK/ERK and AKT/NFkappaB pathways contribute to osteoclast survival. Since PI3K has been shown to activate either of these pathways, we have examined its role in osteoclast survival. PI3K inhibition caused apoptosis of nearly all osteoclasts in purified and co-cultured marrow-derived osteoclasts and spleen-derived osteoclasts maintained with RANKL and M-CSF. Interestingly, in marrow-derived co-cultures, the apoptotic response was restricted to osteoclasts as there was no evidence of stromal support cell apoptosis. PI3K inhibition also blocked MEK1/2, ERK1/2, and AKT phosphorylation and NFkappaB activation in purified osteoclasts. Simultaneous blockage of both AKT and MEK1/2 caused rapid apoptosis of nearly all osteoclasts, mimicking the response to PI3K inhibition. These data reveal that PI3K coordinately activates two distinct survival pathways that are both important in osteoclast survival.  相似文献   

2.
The human papillomavirus type 16 (HPV16) E5 protein associates with the epidermal growth factor receptor (EGFR) and enhances the activation of the EGFR after stimulation by EGF in human keratinocytes. Phosphatidylinositol 3-kinase (PI3K) and ERK1/2 mitogen-activated protein kinase (ERK1/2 MAPK), two signal molecules downstream of the EGFR, have been recognized as participants in two survival signal pathways in response to stress. The fact that E5 can enhance EGFR activation suggests that E5 might act as a survival factor. To test this hypothesis, the apoptotic response of UV B-irradiated primary keratinocytes infected with either control retrovirus, LXSN, or HPV16 2E5-expressing recombinant retrovirus was quantitated. Under the same conditions, LXSN-infected cells showed extensive apoptosis, while E5-expressing cells demonstrated a significant reduction in UV B-irradiation-induced apoptosis. The E5-mediated protection against apoptosis was blocked by wortmannin and PD98059, specific inhibitors of the PI3K and ERK1/2 MAPK pathways, respectively, suggesting that the PI3K and ERK1/2 MAPK pathways are involved in this process. Western blot analysis showed that Akt (also named protein kinase B), which is a downstream effector of PI3K, and ERK1/2 MAPK were activated by EGF. When cells were stimulated by EGF and irradiated by UV B, the levels of phospho-Akt and phospho-ERK1/2 activated by EGF in E5-expressing cells were about twofold greater than those in LXSN-infected cells. Two other UV-activated stress pathways, p38 and JNK, were activated to the same level during UV B irradiation in both LXSN-infected cells and E5-expressing cells, indicating that E5 protein did not affect these two pathways. After UV B irradiation, p53 was activated in both LXSN-infected cells and E5-expressing cells, and cell cycle analysis showed that nearly all cells in both cell populations were growth arrested. These data suggest that unlike HPV16 E6, which blocks apoptosis by inactivation of p53, HPV16 E5 protects cells from apoptosis by enhancing the PI3K-Akt and ERK1/2 MAPK signal pathways.  相似文献   

3.
The epidermal growth factor receptor (EGFR) family comprehends four different tyrosine kinases (EGFR, ErbB-2, ErbB-3, and ErbB-4) that are activated following binding to epidermal growth factor (EGF)-like growth factors. It has been long established that the EGFR system is involved in tumorigenesis. These proteins are frequently expressed in human carcinomas and support proliferation and survival of cancer cells. However, activation of the EGFR in non-malignant cell populations of the neoplastic microenvironment might also play an important role in cancer progression. EGFR signaling regulates in tumor cells the synthesis and secretion of several different angiogenic growth factors, including vascular endothelial growth factor (VEGF), interleukin-8 (IL-8), and basic fibroblast growth factor (bFGF). Overexpression of ErbB-2 also leads to increased expression of angiogenic growth factors, whereas treatment with anti-EGFR or anti-ErbB-2 agents produces a significant reduction of the synthesis of these proteins by cancer cells. EGFR expression and function in tumor-associated endothelial cells has also been described. Therefore, EGFR signaling might regulate angiogenesis both directly and indirectly. In addition, activation of EGFR is involved in the pathogenesis of bone metastases. Within the bone marrow microenvironment, cancer cells stimulate the synthesis of osteoclastogenic factors by residing stromal cells, a phenomenon that leads to bone destruction. It has been shown that EGFR signaling regulates the ability of bone marrow stromal cells to produce osteoclastogenic factors and to sustain osteoclast activation. Taken together, these findings suggest that the EGFR system is an important mediator, within the tumor microenvironment, of autocrine and paracrine circuits that result in enhanced tumor growth.  相似文献   

4.
Oncogenic epidermal growth factor receptor (EGFR) signaling plays an important role in regulating global metabolic pathways, including aerobic glycolysis, the pentose phosphate pathway (PPP), and pyrimidine biosynthesis. However, the molecular mechanism by which EGFR signaling regulates cancer cell metabolism is still unclear. To elucidate how EGFR signaling is linked to metabolic activity, we investigated the involvement of the RAS/MEK/ERK and PI3K/AKT/mammalian target of rapamycin (mTOR) pathways on metabolic alteration in lung adenocarcinoma (LAD) cell lines with activating EGFR mutations. Although MEK inhibition did not alter lactate production and the extracellular acidification rate, PI3K/mTOR inhibitors significantly suppressed glycolysis in EGFR-mutant LAD cells. Moreover, a comprehensive metabolomics analysis revealed that the levels of glucose 6-phosphate and 6-phosphogluconate as early metabolites in glycolysis and PPP were decreased after inhibition of the PI3K/AKT/mTOR pathway, suggesting a link between PI3K signaling and the proper function of glucose transporters or hexokinases in glycolysis. Indeed, PI3K/mTOR inhibition effectively suppressed membrane localization of facilitative glucose transporter 1 (GLUT1), which, instead, accumulated in the cytoplasm. Finally, aerobic glycolysis and cell proliferation were down-regulated when GLUT1 gene expression was suppressed by RNAi. Taken together, these results suggest that PI3K/AKT/mTOR signaling is indispensable for the regulation of aerobic glycolysis in EGFR-mutated LAD cells.  相似文献   

5.
6.
The effects of the Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR signaling pathways on cell cycle progression, gene expression, prevention of apoptosis and sensitivity to chemotherapeutic drugs were examined in FL/ΔAkt-1:ER*(Myr+) + ΔRaf-1:AR cells which are conditionally-transformed to grow in response to Raf-1 and Akt-1 activation by treatment with testosterone or tamoxifen respectively. In these cells we can compare the effects of normal cytokine vs. oncogene mediated signaling in the same cells by changing the culture conditions. Raf-1 was more effective than Akt-1 in inducing cell cycle progression and preventing apoptosis in the presence and absence of chemotherapeutic drugs. The normal cytokine for these cells, interleukin-3 induced/activated most downstream genes transiently, with the exception of p70S6K that was induced for prolonged periods of time. In contrast, most of the downstream genes induced by either the activate Raf-1 or Akt-1 oncogenes were induced for prolonged periods of time, documenting the differences between cytokine and oncogene mediated gene induction which has important therapeutic consequences. The FL/ΔAkt-1:ER*(Myr+) + ΔRaf-1:AR cells were sensitive to MEK and PI3K/mTOR inhibitors. Combining MEK and PI3K/mTOR inhibitors increased the induction of apoptosis. The effects of doxorubicin on the induction of apoptosis could be enhanced with MEK, PI3K and mTOR inhibitors. Targeting the Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR pathways may be an effective approach for therapeutic intervention in those cancers which have upstream mutations which result in activation of these pathways.  相似文献   

7.
8.
9.
Bone marrow stromal cell lines have been isolated that directly support B lymphopoiesis in vitro. Single B-lineage precursors proliferate and differentiate on certain of these stromal cell lines to establish long-term B-lineage cultures. These lymphopoietic stromal cells produce novel soluble factors that support proliferation of in vitro established pre-B cell populations. Lymphoid populations established on lymphopoietic stromal cell lines lack surface Ig-bearing cells, but give rise to surface Ig+ cells when transferred to mixed bone marrow feeder layers. Several stromal lines expressed a B-lineage neoplasia marker detected by the monoclonal antibody MAb6C3. Remarkably, only the 6C3Aghi stromal lines supported long-term proliferation of B-lineage cells. We propose that the 6C3 antigen-bearing molecule may play a role in stromal cell-dependent, pre-B cell proliferation, as well as in neoplastic proliferation of pre-B leukemias.  相似文献   

10.
Objective: The bone marrow microenvironment provides critical support for the growth and survival of acute lymphoblastic leukemia cells and protection against the effects of chemotherapeutic agents. Although the mechanisms are not fully understood, it is likely that they are mediated at least in part by stromal derived cytokines and chemokines. Methods: Cell proliferation was measured by 3H-thymidine assays, survival by Annexin V/PI staining, gene expression by microarray, cytokine protein levels by antibody microarrays and/or ELISA and cellular signaling by western blotting. Results: We have demonstrated that inhibition of p38MAPK in bone marrow stromal cells reduced the production of IL-6, VEGF, PDGF and CXCL12. In addition to the known role of CXCL12 in ALL cell stromal-dependent proliferation, we have shown that VEGF and PDGF also provide important proliferative cues for ALL cells, both as exogenous single agents and as bone marrow stromal culture-derived factors. In contrast we could not detect a significant role for IL-6 in ALL stromal-dependent proliferation. Consistent with these findings inhibition of p38MAPK significantly reduced stromal-dependent proliferation of ALL cells. Conclusion: These findings suggest that inhibition of p38MAPK may provide a useful adjunct to current treatment strategies by retarding ALL cell growth.  相似文献   

11.
Drug-resistance is a major problem preventing a cure in patients with multiple myeloma (MM). Previously, we demonstrated that activated-leukocyte-cell-adhesion-molecule (ALCAM) is a prognostic factor in MM and inhibits EGF/EGFR-initiated MM clonogenicity. In this study, we further showed that the ALCAM-EGF/EGFR axis regulated the MM side population (SP)-mediated drug-resistance. ALCAM-knockdown MM cells displayed an enhanced ratio of SP cells in the presence of bone marrow stromal cells (BMSCs) or with the supplement of recombinant EGF. SP MM cells were resistant to chemotherapeutics melphalan or bortezomib. Drug treatment stimulated SP-genesis. Mechanistically, EGFR, primed with EGF, activated the hedgehog pathway and promoted the SP ratio; meanwhile, ALCAM inhibited EGFR downstream pro-MM cell signaling. Further, SP MM cells exhibited an increased number of mitochondria compared to the main population. Interference of the mitochondria function strongly inhibited SP-genesis. Animal studies showed that combination therapy with both an anti-MM agent and EGFR inhibitor gefitinib achieved prolonged MM-bearing mice survival. Hence, our work identifies ALCAM as a novel negative regulator of MM drug-resistance, and EGFR inhibitors may be used to improve MM therapeutic efficacy.Subject terms: Cancer microenvironment, RNAi  相似文献   

12.
PI3K-mammalian target of rapamycin and MAPK/ERK kinase (MEK)/mitogen-activated protein kinase (MAPK) are the most frequently dysregulated signaling pathways in cancer. A problem that limits the success of therapies that target individual PI3K-MAPK members is that these pathways converge to regulate downstream functions and often compensate each other, leading to drug resistance and transient responses to therapy. In order to overcome resistance, therapies based on cotreatments with PI3K/AKT and MEK/MAPK inhibitors are now being investigated in clinical trials, but the mechanisms of sensitivity to cotreatment are not fully understood. Using LC-MS/MS-based phosphoproteomics, we found that eukaryotic elongation factor 2 kinase (eEF2K), a key convergence point downstream of MAPK and PI3K pathways, mediates synergism to cotreatment with trametinib plus pictilisib (which target MEK1/2 and PI3Kα/δ, respectively). Inhibition of eEF2K by siRNA or with a small molecule inhibitor reversed the antiproliferative effects of the cotreatment with PI3K plus MEK inhibitors in a cell model–specific manner. Systematic analysis in 12 acute myeloid leukemia cell lines revealed that eEF2K activity was increased in cells for which PI3K plus MEKi cotreatment is synergistic, while PKC potentially mediated resistance to such cotreatment. Together, our study uncovers eEF2K activity as a key mediator of responses to PI3Ki plus MEKi and as a potential biomarker to predict synergy to cotreatment in cancer cells.  相似文献   

13.
谭晓红  杨晓 《生命科学》2011,(4):353-358
针对表皮生长因子受体(EGFR)和血管生成(angiogenesis)信号通路的靶向治疗已经在晚期非小细胞肺癌的治疗上取得成功,但由于抗药性的存在,大多数晚期患者的生存时间仍然提高有限。继发性的EGFR T790M突变和原癌基因肝细胞生长因子受体(MET)的扩增被鉴定为两种主要的抗药机制。最近转化生长因子-β(TGF-β)/白介素-6信号通路被报道能介导选择性和适应性地对erlotinib的抗药。另一方面,Kras突变所致肺癌的靶向治疗方面也取得了一些进展。双重抑制磷脂酰肌醇3-激酶(PI3K)和促分裂素原活化蛋白激酶激酶(MEK)信号通路可导致Kras突变肿瘤的显著消退,联合抑制SRC、PI3K和MEK可使丝氨酸/苏氨酸蛋白激酶11(Lkb1)缺失,Kras突变的肺癌小鼠的肿瘤明显消退,抑制核因子-κB(NF-κB)信号通路导致p53缺失,Kras突变的肿瘤发展显著减慢。这些发现都为发展非小细胞肺癌患者的靶向治疗提供了有力的支持。  相似文献   

14.
EGFR is a potent stimulator of invasion and metastasis in head and neck squamous cell carcinomas (HNSCC). However, the mechanism by which EGFR may stimulate tumor cell invasion and metastasis still need to be elucidated. In this study, we showed that activation of EGFR by EGF in HNSCC cell line SCC10A enhanced cell migration and invasion, and induced loss of epitheloid phenotype in parallel with downregulation of E-cadherin and upregulation of N-cadherin and vimentin, indicating that EGFR promoted SCC10A cell migration and invasion possibly by an epithelial to mesenchymal transition (EMT)-like phenotype change. Interestingly, activation of EGFR by EGF induced production of matrix metalloproteinase-9 (MMP-9) and soluble E-cadherin (sE-cad), and knockdown of MMP-9 by siRNA inhibited sE-cad production induced by EGF in SCC10A. Moreover, both MMP-9 knockdown and E-cadherin overexpression inhibited cell migration and invasion induced by EGF in SCC10A. The results indicate that EGFR activation promoted cell migration and invasion through inducing MMP-9-mediated degradation of E-cadherin into sE-cad. Pharmacologic inhibition of EGFR, MEK, and PI3K kinase activity in SCC10A reduced phosphorylated levels of ERK-1/2 and AKT, production of MMP-9 and sE-cad, cell migration and invasion, and expressional changes of EMT markers (E-cadherin and N-cadherin) induced by EGF, indicating that EGFR activation promotes cell migration and invasion via ERK-1/2 and PI3K-regulated MMP-9/E-cadherin signaling pathways. Taken together, the data suggest that EGFR activation promotes HNSCC SCC10A cell migration and invasion by inducing EMT-like phenotype change and MMP-9-mediated degradation of E-cadherin into sE-cad related to activation of ERK-1/2 and PI3K signaling pathways.  相似文献   

15.
Chronic lymphocytic leukemia (CLL) cells feature a pronounced apoptotic resistance. The vascular endothelial growth factor (VEGF) possesses a role in this apoptotic block, although underlying functional mechanisms and the involvement of the microenvironment are unclear. In this study, the VEGF status in CLL was assessed by enzyme-linked immunosorbent assay and immunofluorescence. VEGF receptor 2 (VEGFR2) phosphorylation was determined flow cytometrically and by immunofluorescence. For co-culture, CLL cells were cultivated on a monolayer of the bone marrow-derived stromal cell (BMSC) line HS5. Secreted VEGF was neutralized using the monoclonal antibody mAb293 (R&D Systems, Minneapolis, MN, USA). To block protein secretion, we used Brefeldin A. VEGF was downregulated in BMSCs by small interfering RNA (siRNA), and we assessed survival by annexin V-fluorescein isothiocyanate (FITC)/propidium iodide (PI) staining. CLL cells express and secrete VEGF and possess phosphorylated VEGFR2. This positive VEGF status is not sufficient to prevent spontaneous apoptosis in vitro. Coculture with BMSCs, which secrete vast amounts of VEGF, maintains in vitro CLL cell survival. Blockage of secreted VEGF using the monoclonal antibody mAb293 significantly reduced the survival support for cocultured CLL cells. Both general blockage of protein secretion by Brefeldin A in BMSCs, but not in CLL cells, and siRNA-mediated downregulation of VEGF in BMSCs, significantly reduced the coculture-mediated survival support for CLL cells. It can be concluded that BMSC-derived proteins and VEGF, in particular, but not CLL cell-derived VEGF, is essentially involved in the coculture-mediated survival support for CLL cells. Hence, therapeutic targeting of VEGF signaling might be a promising approach to overcome the apoptotic resistance CLL cells feature within their natural microenvironment.  相似文献   

16.
17.
The effects of inhibition of the Raf/MEK/ERK and PI3K/Akt/mTOR signaling pathways and chemotherapeutic drugs on cell cycle progression and drug sensitivity were examined in cytokine-dependent FL5.12 hematopoietic cells. We examined their effects, as these cells resemble normal hematopoietic precursor cells as they do not exhibit “oncogene-addicted” growth, while they do display “cytokine-addicted” proliferation as cytokine removal resulted in apoptosis in greater than 80% of the cells within 48 h. When cytokine-dependent FL5.12 cells were cultured in the presence of IL-3, which stimulated multiple proliferation and anti-apoptotic cascades, MEK, PI3K and mTOR inhibitors transiently suppressed but did not totally inhibit cell cycle progression or induce apoptosis while chemotherapeutic drugs such as doxorubicin and paclitaxel were more effective in inducing cell cycle arrest and apoptosis. Doxorubicin induced a G1 block, while paclitaxel triggered a G2/M block. Doxorubicin was more effective in inducing cell death than paclitaxel. Furthermore the effects of doxorubicin could be enhanced by addition of MEK, PI3K or mTOR inhibitors. Cytokine-dependent cells which proliferate in vitro and are not “oncogene-addicted” may represent a pre-malignant stage, more refractory to treatment with targeted therapy. However, these cells are sensitive to chemotherapeutic drugs. It is important to develop methods to inhibit the growth of such cytokine-dependent cells as they may resemble the leukemia stem cell and other cancer initiating cells. These results demonstrate the enhanced effectiveness of targeting early hematopoietic progenitor cells with combinations of chemotherapeutic drugs and signal transduction inhibitors.  相似文献   

18.
The epidermal growth factor (EGF) activates the phosphatidylinositol 3-kinase (PI3K)-Akt cascade among other signaling pathways. This route is involved in cell proliferation and survival, therefore, its dysregulation can promote cancer. Considering the relevance of the PI3K-Akt signaling in cell survival and in the pathogenesis of cancer, and that GH was reported to modulate EGFR expression and signaling, the objective of this study was to analyze the effects of increased GH levels on EGF-induced PI3K-Akt signaling.EGF-induced signaling was evaluated in the liver of GH-overexpressing transgenic mice and in their normal siblings. While Akt expression was increased in GH-overexpressing mice, EGF-induced phosphorylation of Akt, relative to its protein content, was diminished at Ser473 and inhibited at Thr308; consequently, mTOR, which is a substrate of Akt, was not activated by EGF. However, the activation of PDK1, a kinase involved in Akt phosphorylation at Thr308, was not reduced in transgenic mice. Kinetics studies of EGF-induced Akt phosphorylation showed that it is rapidly and transiently induced in GH-overexpressing mice compared with normal siblings. Thus, the expression and activity of phosphatases involved in the termination of the PI3K-Akt signaling were studied. In transgenic mice, neither PTEN nor PP2A were hyperactivated; however, EGF induced the rapid and transient association of SHP-2 to Gab1, which mediates association to EGFR and activation of PI3K. Rapid recruitment of SHP2, which would accelerate the termination of the proliferative signal induced, could be therefore contributing to the diminished EGF-induced activity of Akt in GH-overexpressing mice.  相似文献   

19.
Cancer progression and outcome depend upon two key functions executed by tumor cells: the growth and survival capability leading to resistance to therapy and the invasion into host tissues resulting in local and metastatic dissemination. Although both processes are widely studied separately, the underlying cell-intrinsic and microenvironmentally controlled signaling pathways reveal substantial overlap in mechanism. Candidate signaling hubs that serve both tumor invasion and resistance include growth factor and chemokine signaling, integrin engagement, and components of the Ras/MAPKs, PI3K, and mTOR signaling pathways. In this review, we summarize these and other mechanisms controlled by the microenvironment that jointly support cancer cell survival and resistance, as well as the invasion machinery. We also discuss their interdependencies and the implications for therapeutic dual- or multi-pathway targeting.  相似文献   

20.
Spontaneous electrical network activity plays a major role in the control of cell survival in the developing brain. Several intracellular pathways are implicated in transducing electrical activity into gene expression dependent and independent survival signals. These include activation of phosphatidylinositol 3-kinase (PI3K) and its downstream effector Akt, activation of Ras and subsequently MAPK/extracellular signal-regulated kinase (MEK) and extracellular signal-regulated kinase and signalling via calcium/calmodulin-dependent protein kinase (CaMK). In the present study, we analyzed the role of these pathways for the control of neuronal survival in different extracellular potassium concentrations ([K(+) ](ex) ). Organotypic neocortical slice cultures prepared from newborn mice were kept in 5.3, 8.0 and 25.0mM [K(+) ](ex) and treated with specific inhibitors of PI3K, MEK1, CaMKK and a broad spectrum CaMK inhibitor. After 6h of incubation, slices were immunostained for activated caspase 3 (a-caspase 3) and the number of apoptotic cells was quantified by computer based analysis. We found that in 5.3 and 8.0mM [K(+) ](ex) only PI3K was important for neuronal survival. When [K(+) ](ex) was raised to 25.0mM, a concentration above the depolarization block, we found no influence of PI3K on neuronal survival. Our data demonstrate that only the PI3K pathway, and not the MEK1, CaMKK or CaMKs pathway, plays a central role in the regulation of activity-dependent neuronal survival in the developing cerebral cortex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号