首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A cytoplasmic peptide:N-glycanase has been implicated in the proteasomal degradation of newly synthesized misfolded glycoproteins that are exported from the endoplasmic reticulum to the cytosol. Recently, the gene encoding this enzyme (Png1p) was identified in yeast and shown to bind to the 26S proteasome through its interaction with a component of the DNA repair system, Rad23p. Moreover, a mouse homologue of Png1p (mPng1p), which has an extended N-terminal domain, was found to bind not only to the Rad23 protein, but also to various proteins related to the ubiquitin/proteasome pathway. An extended N-terminus of mPng1p, which is not found in yeast, contains a potential site of protein-protein interaction called the PUB/PUG domain. The PUB/PUG domain is predicted to be helix-rich and is found in various proteins that may be involved in the ubiquitin/proteasome-related pathway. This review will discuss the consequence of the deglycosylation reaction by peptide:N-glycanase in cellular processes. In addition, the potential importance of the PUB/PUG domain for the formation of a putative "glycoprotein-degradation complex" will be discussed.  相似文献   

2.
Imelysin-like proteins define a superfamily of bacterial proteins that are likely involved in iron uptake. Members of this superfamily were previously thought to be peptidases and were included in the MEROPS family M75. We determined the first crystal structures of two remotely related, imelysin-like proteins. The Psychrobacter arcticus structure was determined at 2.15 Å resolution and contains the canonical imelysin fold, while higher resolution structures from the gut bacteria Bacteroides ovatus, in two crystal forms (at 1.25 Å and 1.44 Å resolution), have a circularly permuted topology. Both structures are highly similar to each other despite low sequence similarity and circular permutation. The all-helical structure can be divided into two similar four-helix bundle domains. The overall structure and the GxHxxE motif region differ from known HxxE metallopeptidases, suggesting that imelysin-like proteins are not peptidases. A putative functional site is located at the domain interface. We have now organized the known homologous proteins into a superfamily, which can be separated into four families. These families share a similar functional site, but each has family-specific structural and sequence features. These results indicate that imelysin-like proteins have evolved from a common ancestor, and likely have a conserved function.  相似文献   

3.
A phosphoprotein (P) is found in all viruses of the Mononegavirales order. These proteins form homo-oligomers, fulfil similar roles in the replication cycles of the various viruses, but differ in their length and oligomerization state. Sequence alignments reveal no sequence similarity among proteins from viruses belonging to the same family. Sequence analysis and experimental data show that phosphoproteins from viruses of the Paramyxoviridae contain structured domains alternating with intrinsically disordered regions. Here, we used predictions of disorder of secondary structure, and an analysis of sequence conservation to predict the domain organization of the phosphoprotein from Sendai virus, vesicular stomatitis virus (VSV) and rabies virus (RV P). We devised a new procedure for combining the results from multiple prediction methods and locating the boundaries between disordered regions and structured domains. To validate the proposed modular organization predicted for RV P and to confirm that the putative structured domains correspond to autonomous folding units, we used two-hybrid and biochemical approaches to characterize the properties of several fragments of RV P. We found that both central and C-terminal domains can fold in isolation, that the central domain is the oligomerization domain, and that the C-terminal domain binds to nucleocapsids. Our results suggest a conserved organization of P proteins in the Rhabdoviridae family in concatenated functional domains resembling that of the P proteins in the Paramyxoviridae family.  相似文献   

4.
Several phage-encoded peptidoglycan hydrolases have been found to share a conserved amidase domain with a variety of bacterial autolysins (N-acetylmuramoyl-L-alanine amidases), bacterial and eukaryotic glutathionylspermidine amidases, gamma-D-glutamyl-L-diamino acid endopeptidase and NLP/P60 family proteins. All these proteins contain conserved cysteine and histidine residues and hydrolyze gamma-glutamyl-containing substrates. These cysteine residues have been shown to be essential for activity of several of these amidases and their thiol groups apparently function as the nucleophiles in the catalytic mechanisms of all enzymes containing this domain. The CHAP (cysteine, histidine-dependent amidohydrolases/peptidases) superfamily includes a variety of previously uncharacterized proteins, including the tail assembly protein K of phage lambda. Some members of this superfamily are important surface antigens in pathogenic bacteria and might represent drug and/or vaccine targets.  相似文献   

5.
The PYRIN domain: a member of the death domain-fold superfamily   总被引:7,自引:0,他引:7       下载免费PDF全文
PYRIN domains were identified recently as putative protein-protein interaction domains at the N-termini of several proteins thought to function in apoptotic and inflammatory signaling pathways. The approximately 95 residue PYRIN domains have no statistically significant sequence homology to proteins with known three-dimensional structure. Using secondary structure prediction and potential-based fold recognition methods, however, the PYRIN domain is predicted to be a member of the six-helix bundle death domain-fold superfamily that includes death domains (DDs), death effector domains (DEDs), and caspase recruitment domains (CARDs). Members of the death domain-fold superfamily are well established mediators of protein-protein interactions found in many proteins involved in apoptosis and inflammation, indicating further that the PYRIN domains serve a similar function. An homology model of the PYRIN domain of CARD7/DEFCAP/NAC/NALP1, a member of the Apaf-1/Ced-4 family of proteins, was constructed using the three-dimensional structures of the FADD and p75 neurotrophin receptor DDs, and of the Apaf-1 and caspase-9 CARDs, as templates. Validation of the model using a variety of computational techniques indicates that the fold prediction is consistent with the sequence. Comparison of a circular dichroism spectrum of the PYRIN domain of CARD7/DEFCAP/NAC/NALP1 with spectra of several proteins known to adopt the death domain-fold provides experimental support for the structure prediction.  相似文献   

6.
The restriction endonuclease (REase) R. HphI is a Type IIS enzyme that recognizes the asymmetric target DNA sequence 5'-GGTGA-3' and in the presence of Mg(2+) hydrolyzes phosphodiester bonds in both strands of the DNA at a distance of 8 nucleotides towards the 3' side of the target, producing a 1 nucleotide 3'-staggered cut in an unspecified sequence at this position. REases are typically ORFans that exhibit little similarity to each other and to any proteins in the database. However, bioinformatics analyses revealed that R.HphI is a member of a relatively big sequence family with a conserved C-terminal domain and a variable N-terminal domain. We predict that the C-terminal domains of proteins from this family correspond to the nuclease domain of the HNH superfamily rather than to the most common PD-(D/E)XK superfamily of nucleases. We constructed a three-dimensional model of the R.HphI catalytic domain and validated our predictions by site-directed mutagenesis and studies of DNA-binding and catalytic activities of the mutant proteins. We also analyzed the genomic neighborhood of R.HphI homologs and found that putative nucleases accompanied by a DNA methyltransferase (i.e. predicted REases) do not form a single group on a phylogenetic tree, but are dispersed among free-standing putative nucleases. This suggests that nucleases from the HNH superfamily were independently recruited to become REases in the context of RM systems multiple times in the evolution and that members of the HNH superfamily may be much more frequent among the so far unassigned REase sequences than previously thought.  相似文献   

7.
The U-box protein family in plants   总被引:15,自引:0,他引:15  
The U-box is a highly conserved domain recently identified at the C terminus of yeast UFD2, an E4 ubiquitination factor. In yeast, UFD2 is the only U-box-containing protein, but there are two UFD2 homologs and several other proteins containing a U-box domain in humans. Intriguingly, a database search revealed 37 predicted proteins containing a U-box in Arabidopsis. The plant U-box (PUB) proteins form five distinct subclasses, suggesting that they play diverse roles. The ARC1 gene from Brassica, required for self-incompatibility, is currently the only PUB gene functionally characterized. Here, we discuss the characteristics and possible functions of the PUB gene family.  相似文献   

8.
The AAA ATPase p97 is a ubiquitin-selective molecular machine involved in multiple cellular processes, including protein degradation through the ubiquitin-proteasome system and homotypic membrane fusion. Specific p97 functions are mediated by a variety of cofactors, among them peptide N-glycanase, an enzyme that removes glycans from misfolded glycoproteins. Here we report the three-dimensional structure of the aminoterminal PUB domain of human peptide N-glycanase. We demonstrate that the PUB domain is a novel p97 binding module interacting with the D1 and/or D2 ATPase domains of p97 and identify an evolutionary conserved surface patch required for p97 binding. Furthermore, we show that the PUB and UBX domains do not bind to p97 in a mutually exclusive manner. Our results suggest that PUB domain-containing proteins constitute a widespread family of diverse p97 cofactors.  相似文献   

9.
The PAAD/DAPIN/pyrin domain is the fourth member of the death domain superfamily, but unlike other members of this family, it is involved not only in apoptosis but also in innate immunity and several other processes. We have identified 40 PAAD domain-containing proteins by extensively searching the genomes of higher eukaryotes and viruses. Phylogenetic analyses suggest that there are five categories of PAAD domains that correlate with the domain architecture of the entire proteins. Homology models built on CARD and DD structures identified functionally important residues by studying conservation patterns on the surface of the models. Surface maps of each subfamily show different distributions of these residues, suggesting that domains from different subfamilies do not interact with each other, forming independent regulatory networks. Helix3 of PAAD is predicted to be critical for dimerization. Multiple alignment analysis and modeling suggest that it may be partly disordered, following a new paradigm for interaction proteins that are stabilized by protein-protein interactions.  相似文献   

10.
Zhu X  Ménard R  Sulea T 《Proteins》2007,69(1):1-7
Ubiquitin-specific proteases (USPs) emerge as key regulators of numerous cellular processes and account for the bulk of human deubiquitinating enzymes (DUBs). Their modular structure, mostly annotated by sequence homology, is believed to determine substrate recognition and subcellular localization. Currently, a large proportion of known human USP sequences are not annotated either structurally or functionally, including regions both within and flanking their catalytic cores. To extend the current understanding of human USPs, we applied consensus fold recognition to the unannotated content of the human USP family. The most interesting discovery was the marked presence of reliably predicted ubiquitin-like (UBL) domains in this family of enzymes. The UBL domain thus appears to be the most frequently occurring domain in the human USP family, after the characteristic catalytic domain. The presence of multiple UBL domains per USP protein, as well as of UBL domains embedded in the USP catalytic core, add to the structural complexity currently recognized for many DUBs. Possible functional roles of the newly uncovered UBL domains of human USPs, including proteasome binding, and substrate and protein target specificities, are discussed.  相似文献   

11.
A bioinformatics-based investigation of three insect species with completed genome sequences has revealed that insect chitinase-like proteins (glycosylhydrolase family 18) are encoded by a rather large and diverse group of genes. We identified 16, 16 and 13 putative chitinase-like genes in the genomic databases of the red flour beetle, Tribolium castaneum, the fruit fly, Drosophila melanogaster, and the malaria mosquito, Anopheles gambiae, respectively. Chitinase-like proteins encoded by this gene family were classified into five groups based on phylogenetic analyses. Group I chitinases are secreted proteins that are the most abundant such enzymes in molting fluid and/or integument, and represent the prototype enzyme of the family, with a single copy each of the catalytic domain and chitin-binding domain (ChBD) connected by an S/T-rich linker polypeptide. Group II chitinases are unusually larger-sized secreted proteins that contain multiple catalytic domains and ChBDs. Group III chitinases contain two catalytic domains and are predicted to be membrane-anchored proteins. Group IV chitinases are the most divergent. They usually lack a ChBD and/or an S/T-rich linker domain, and are known or predicted to be secreted proteins found in gut or fat body. Group V proteins include the putative chitinase-like imaginal disc growth factors (IDGFs). In each of the three insect genomes, multiple genes encode group IV and group V chitinase-like proteins. In contrast, groups I-III are each represented by only a singe gene in each species.  相似文献   

12.
Nakjang S  Ndeh DA  Wipat A  Bolam DN  Hirt RP 《PloS one》2012,7(1):e30287
The mucosal microbiota is recognised as an important factor for our health, with many disease states linked to imbalances in the normal community structure. Hence, there is considerable interest in identifying the molecular basis of human-microbe interactions. In this work we investigated the capacity of microbes to thrive on mucosal surfaces, either as mutualists, commensals or pathogens, using comparative genomics to identify co-occurring molecular traits. We identified a novel domain we named M60-like/PF13402 (new Pfam entry PF13402), which was detected mainly among proteins from animal host mucosa-associated prokaryotic and eukaryotic microbes ranging from mutualists to pathogens. Lateral gene transfers between distantly related microbes explained their shared M60-like/PF13402 domain. The novel domain is characterised by a zinc-metallopeptidase-like motif and is distantly related to known viral enhancin zinc-metallopeptidases. Signal peptides and/or cell surface anchoring features were detected in most microbial M60-like/PF13402 domain-containing proteins, indicating that these proteins target an extracellular substrate. A significant subset of these putative peptidases was further characterised by the presence of associated domains belonging to carbohydrate-binding module family 5/12, 32 and 51 and other glycan-binding domains, suggesting that these novel proteases are targeted to complex glycoproteins such as mucins. An in vitro mucinase assay demonstrated degradation of mammalian mucins by a recombinant form of an M60-like/PF13402-containing protein from the gut mutualist Bacteroides thetaiotaomicron. This study reveals that M60-like domains are peptidases targeting host glycoproteins. These peptidases likely play an important role in successful colonisation of both vertebrate mucosal surfaces and the invertebrate digestive tract by both mutualistic and pathogenic microbes. Moreover, 141 entries across various peptidase families described in the MEROPS database were also identified with carbohydrate-binding modules defining a new functional context for these glycan-binding domains and providing opportunities to engineer proteases targeting specific glycoproteins for both biomedical and industrial applications.  相似文献   

13.
Seto MH  Liu HL  Zajchowski DA  Whitlow M 《Proteins》1999,35(2):235-249
The B30.2-like domain occurs in some members of a diverse and growing family of proteins containing zinc-binding B-box motifs, whose functions include regulation of cell growth and differentiation. The B30.2-like domain is also found in proteins without the zinc-binding motifs, such as butyrophilin (a transmembrane glycoprotein) and stonustoxin (a secreted cytolytic toxin). Currently, the function for the B30.2-like domain is not clear and the structure of a protein containing this domain has not been solved. The secondary structure prediction methods indicate that the B30.2-like domain consists of fifteen or fewer beta-strands. Fold recognition methods identified different structural topologies for the B30.2-like domains. Secondary structure prediction, deletion and lack of local sequence identity at the C-terminal region for certain members of the family, and packing of known core structures suggest that a structure containing two beta domains is the most probable of these folds. The most C-terminal sequence motif predicted to be a beta-strand in all B30.2-like domains is a potential subdomain boundary based on the sequence-structure alignments. Models of the B30.2-like domains were built based on immunoglobulin-like folds identified by the fold recognition methods to evaluate the possibility of the B30.2 domain adopting known folds and infer putative functional sites. The SPRY domain has been identified as a subdomain within the B30.2-like domain. If the B30.2-like domain is a subclass of the SPRY domain family, then this analysis would suggest that the SPRY domains are members of the immunoglobulin superfamily.  相似文献   

14.
Two previously undetected domains were identified in a variety of RNA-binding proteins, particularly RNA-modifying enzymes, using methods for sequence profile analysis. A small domain consisting of 60–65 amino acid residues was detected in the ribosomal protein S4, two families of pseudouridine synthases, a novel family of predicted RNA methylases, a yeast protein containing a pseudouridine synthetase and a deaminase domain, bacterial tyrosyl-tRNA synthetases, and a number of uncharacterized, small proteins that may be involved in translation regulation. Another novel domain, designated PUA domain, after PseudoUridine synthase and Archaeosine transglycosylase, was detected in archaeal and eukaryotic pseudouridine synthases, archaeal archaeosine synthases, a family of predicted ATPases that may be involved in RNA modification, a family of predicted archaeal and bacterial rRNA methylases. Additionally, the PUA domain was detected in a family of eukaryotic proteins that also contain a domain homologous to the translation initiation factor eIF1/SUI1; these proteins may comprise a novel type of translation factors. Unexpectedly, the PUA domain was detected also in bacterial and yeast glutamate kinases; this is compatible with the demonstrated role of these enzymes in the regulation of the expression of other genes. We propose that the S4 domain and the PUA domain bind RNA molecules with complex folded structures, adding to the growing collection of nucleic acid-binding domains associated with DNA and RNA modification enzymes. The evolution of the translation machinery components containing the S4, PUA, and SUI1 domains must have included several events of lateral gene transfer and gene loss as well as lineage-specific domain fusions. Received: 15 May 1998 / Accepted: 20 July 1998  相似文献   

15.
Tomato mosaic virus (genus, Tobamovirus) is a member of the alphavirus-like superfamily of positive-strand RNA viruses, which include many plant and animal viruses of agronomical and clinical importance. The RNA of alphavirus-like superfamily members encodes replication-associated proteins that contain a putative superfamily 1 helicase domain. To date, a viral three-dimensional superfamily 1 helicase structure has not been solved. For the study reported herein, we expressed tomato mosaic virus replication proteins that contain the putative helicase domain and additional upstream N-terminal residues in Escherichia coli. We found that an additional 155 residues upstream of the N-terminus of the helicase domain were necessary for stability. We developed an efficient procedure for the expression and purification of this fragment and have examined factors that affect its stability. Finally, we also showed that the stable fragment has nucleoside 5'-triphosphatase activity.  相似文献   

16.
Peptide:N-glycanase (PNGase) releases N-glycans from glycoproteins/glycopeptides. Cytoplasmic PNGase is widely recognized as a component of machinery for ER-associated degradation (ERAD), i.e. proteasomal degradation of misfolded, newly synthesized (glyco)proteins that have been exported from the ER. The enzyme belongs to the "transglutaminase superfamily" that contains a putative catalytic triad of cysteine, histidine, and aspartic acid. The mammalian orthologues of PNGase contain the N-terminal PUB domain that serves as the protein-protein interaction domain. The C-terminus of PNGase was recently found to be a novel carbohydrate-binding domain. Taken together, these observations indicate that C-terminus of mammalian PNGase is important for recognition of the substrates while N-terminus of this enzyme is involved in assembly of a degradation complex.  相似文献   

17.
18.
We have searched the Arabidopsis and rice (Oryza sativa) genomes for homologs of LRX1, an Arabidopsis gene encoding a novel type of cell wall protein containing a leucine-rich repeat (LRR) and an extensin domain. Eleven and eight LRX (LRR/EXTENSIN) genes have been identified in these two plant species, respectively. The LRX gene family encodes proteins characterized by a short N-terminal domain, a domain with 10 LRRs, a cysteine-rich motif, and a variable C-terminal extensin-like domain. Phylogenetic analysis performed on the conserved domains indicates the existence of two major clades of LRX proteins that arose before the eudicot/monocot divergence and then diversified independently in each lineage. In Arabidopsis, gene expression studies by northern hybridization and promoter::uidA fusions showed that the two phylogenetic clades represent a specialization into "reproductive" and "vegetative" LRXs. The four Arabidopsis genes of the "reproductive" clade are specifically expressed in pollen, whereas the seven "vegetative" genes are predominantly expressed in various sporophytic tissues. This separation into two expression classes is also supported by previous studies on maize (Zea mays) and tomato (Lycopersicon esculentum) LRX homologs and by information on available rice ESTs. The strong conservation of the amino acids responsible for the putative recognition specificity of the LRR domain throughout the family suggests that the LRX proteins interact with similar ligands.  相似文献   

19.
Small Rho family GTPases are involved in regulation of actin cytoskeleton dynamics. These molecular switches are themselves mainly controlled by specific GTPase-activating proteins (GAPs) and guanine-nucleotide exchange factors (GEFs). We have cloned and initially characterized a novel putative RhoGEF from Dictyostelium discoideum. The predicted 135-kDa protein displays a unique domain organization in its N-terminus by harboring two type3 calponin homology (CH) domains followed by a single type1 CH domain. The C-terminal region encompasses a diffuse B-cell lymphoma homology/pleckstrin homology tandem domain that is typically found in RhoGEFs. We therefore refer to this protein as Trix (triple CH-domain array exchange factor). A recombinant N-terminal region of Trix carrying all three CH domains binds to F-actin and bundles actin filaments. Trix-null mutants are viable and display only subtle defects when compared to wild-type cells with the exception of a substantial decrease in exocytosis of a fluid-phase marker. GFP fusions with the full-length protein or the N-terminal part containing all three CH domains revealed that Trix localizes to the cortical region and strongly accumulates on late endosomes. Our results suggest that Trix is specifically involved in a Rho GTPase-signaling pathway that is required for regulation of the actin cytoskeleton during exocytosis.  相似文献   

20.
Ubiquitylation, the modification of cellular proteins by the covalent attachment of ubiquitin, is critical for diverse biological processes including cell cycle progression, signal transduction and stress response. This process can be reversed and regulated by a group of proteases called deubiquitylating enzymes (DUBs). Otubains are a recently identified family of DUBs that belong to the ovarian tumour (OTU) superfamily of proteins. Here, we report the first crystal structure of an OTU superfamily protein, otubain 2, at 2.1 A resolution and propose a model for otubain-ubiquitin binding on the basis of other DUB structures. Although otubain 2 is a member of the cysteine protease superfamily of folds, its crystal structure shows a novel fold for DUBs. Moreover, the active-site cleft is sterically occluded by a novel loop conformation resulting in an oxyanion hole, which consists uniquely of backbone amides, rather than the composite backbone/side-chain substructures seen in other DUBs and cysteine proteases. Furthermore, the residues that orient and stabilize the active-site histidine of otubain 2 are different from other cysteine proteases. This reorganization of the active-site topology provides a possible explanation for the low turnover and substrate specificity of the otubains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号