首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Effects of the histone-deacetylases inhibitor trichostatin A (TSA) on the growth of three different human pancreatic endocrine carcinoma cell lines (CM, BON, and QGP-1) have been assessed via dosage-dependent growth inhibition curves. TSA determined strong inhibition of cell growth with similar IC(50) values for the different cell lines: 80.5 nM (CM), 61.6 nM (BON), and 86 nM (QGP-1), by arresting the cell cycle in G2/M phase and inducing apoptosis. 2DE and nano-RP-HPLC-ESI-MS/MS analysis revealed 34, 33, and 38 unique proteins differentially expressed after TSA treatment in the CM, BON, and QGP-1 cell lines, respectively. The most important groups of modulated proteins belong to cell proliferation, cell cycle, and apoptosis classes (such as peroxiredoxins 1 and 2, the diablo protein, and HSP27). Other proteins pertain to processes such as regulation of gene expression (nucleophosmin, oncoprotein dek), signal transduction (calcium-calmodulin), chromatin, and cytoskeleton organization (calgizzarin, dynein, and lamin), RNA splicing (nucleolin, HNRPC), and protein folding (HSP70). The present data are in agreement with previous proteomic analyses performed on pancreatic ductal carcinoma cell lines (Cecconi, D. et al.., Electrophoresis 2003; Cecconi, D. et al., J. Proteome Res. 2005) and place histone-deacetylases inhibitors among the potentially most powerful drugs for the treatment of pancreatic tumors.  相似文献   

4.
Valproic acid (VPA) has been used as an anticonvulsant agent for the treatment of epilepsy, as well as a mood stabilizer for the treatment of bipolar disorder, for several decades. The mechanism of action for these effects remains to be elucidated and is most likely multifactorial. Recently, VPA has been reported to inhibit histone deacetylase (HDAC) and HDAC has been reported to play roles in differentiation of mammalian cells. In this study, the effects of HDAC inhibitors on differentiation and proliferation of human adipose tissue-derived stromal cells (hADSC) and bone marrow stromal cells (hBMSC) were determined. VPA increased osteogenic differentiation in a dose dependent manner. The pretreatment of VPA before induction of differentiation also showed stimulatory effects on osteogenic differentiation of hMSC. Trichostatin A (TSA), another HDAC inhibitor, also increased osteogenic differentiation, whereas valpromide (VPM), a structural analog of VPA which does not possess HDAC inhibitory effects, did not show any effect on osteogenic differentiation on hADSC. RT-PCR and Real-time PCR analysis revealed that VPA treatment increased osterix, osteopontin, BMP-2, and Runx2 expression. The addition of noggin inhibited VPA-induced potentiation of osteogenic differentiation. VPA inhibited proliferation of hADSC and hBMSC. Our results suggest that VPA enhance osteogenic differentiation, probably due to inhibition of HDAC, and could be useful for in vivo bone engineering using hMSC.  相似文献   

5.
Prospects: histone deacetylase inhibitors   总被引:14,自引:0,他引:14  
  相似文献   

6.
Cationic peptides, known to disrupt bacterial membranes, are being developed as promising agents for therapeutic intervention against infectious disease. In the present study, we investigate structure-activity relationships in the bacterial membrane disruptor betapep-25, a peptide 33-mer. For insight into which amino acid residues are functionally important, we synthesized alanine-scanning variants of betapep-25 and assessed their ability to kill bacteria (Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus) and to neutralize LPS (lipopolysaccharide). Activity profiles were found to vary with the bacterial strain examined. Specific cationic and smaller hydrophobic alkyl residues were crucial to optimal bactericidal activity against the Gram-negative bacteria, whereas larger hydrophobic and cationic residues mediated optimal activity against Gram-positive Staph. aureus. Lysine-substituted norleucine (n-butyl group) variants demonstrated that both charge and alkyl chain length mediate optimal activity. In terms of LPS neutralization, activity profiles were essentially the same against four species of LPS (E. coli 055 and 0111, Salmonella enterica serotype Typhimurium and Klebsiella pneumoniae), and different for two others (Ps. aeruginosa and Serratia marcescens), with specific hydrophobic, cationic and, surprisingly, anionic residues being functionally important. Furthermore, disulfide-bridged analogues demonstrated that an anti parallel beta-sheet structure is the bioactive conformation of betapep-25 in terms of its bactericidal, but not LPS endotoxin neutralizing, activity. Moreover, betapep-25 variants, like the parent peptide, do not lyse eukaryotic cells. This research contributes to the development and design of novel antibiotics.  相似文献   

7.
8.
The screening tests of N-hydroxybenzamides for their HDAC-inhibitory activities led to the discovery of the promising compounds with a 2-naphthylcarbonyl group and with a 1,4-biphenylcarbonyl group. These compounds were further modified to optimize their physico-chemical profile. As a result, the inhibitor with a 6-amino-2-naphthylcarbonyl was obtained, which showed not only promising growth inhibitions against a panel of tumor cells, but also an improved water solubility. It exhibited the maximal 185% of survival rate (%T/C) in a in vivo experiment with P388 cell-inoculated mice.  相似文献   

9.
张伟  明镇寰 《生命科学》2006,18(1):80-83
组蛋白乙酰化和去乙酰化可调节染色体的多种功能,例如基因表达和染色体分离等。研究发现,组蛋白去乙酰化酶抑制剂(histone deacetylase inhibitors,HDACIs)可诱导分化、生长阻断和肿瘤细胞凋亡,目前HDACIs正作为抗肿瘤药物进行临床试验,在肿瘤治疗中显示出具有较好的应用前景。然而,人们对于HDACIs在生物体内是如何发挥作用以及不同类型细胞为何会有不同的应答途径却关注甚少。本综述通过讨论HDACIs对周期和非周期细胞中组蛋白去乙酰化酶的抑制结果,来阐明组蛋白乙酰化模式的动力学特征,特别是对基因组异染色质的作用。  相似文献   

10.
Histone deacetylase (HDAC) inhibitors that target Class I and Class II HDACs are of synthetic and therapeutic interest and ongoing clinical studies indicate that they show great promise for the treatment of cancer. Moreover, Zolinza (vorinostat) was recently approved by the FDA for the treatment of the cutaneous manifestations of cutaneous T-cell lymphoma [Nat. Rev. Drug Disc. 2007, 6, 21]. As part of a broader effort to more fully explore the structure-activity relationships (SAR) of HDAC inhibitors, we sought to identify novel HDAC inhibitor structures through iterative design by utilizing low affinity ligands as synthetic starting points for SAR development. Novel and potent HDAC inhibitors have been identified using this approach and herein we report the optimization of the recognition elements of a novel series of malonyl-derived HDAC inhibitors.  相似文献   

11.
12.
Histone deacetylase inhibitors (HDACI) are potential therapeutic agents that inhibit tumor cell growth and survival. Although there are several publications regarding the effects of HDACIs on prostate cancer cell growth, their mechanism(s) of action remains undefined. We treated several human prostate cancer cell lines with the HDACI trichostatin A and found that trichostatin A induced cell death in androgen receptor (AR)-positive cell lines to higher extent compared with AR-negative cell lines. We then discovered that trichostatin A and other HDACIs suppressed AR gene expression in prostate cancer cell lines as well as in AR-positive breast carcinoma cells and in mouse prostate. Trichostatin A also induced caspase activation, but trichostatin A-induced AR suppression and cell death were caspase independent. In addition, we found that doxorubicin inhibited AR expression, and p21 protein completely disappeared after simultaneous treatment with trichostatin A and doxorubicin. This effect may be attributed to the induction of protease activity under simultaneous treatment with these two agents. Further, simultaneous treatment with trichostatin A and doxorubicin increased cell death in AR-positive cells even after culturing in steroid-free conditions. The protease/proteasome inhibitor MG132 protected AR and p21 from the effects of trichostatin A and doxorubicin and inhibited trichostatin A-induced cell death in AR-positive prostate cells. Taken together, our data suggest that the main mechanism of trichostatin A-induced cell death in AR-positive prostate cancer is inhibition of AR gene expression. The synergistic effect of simultaneous treatment with trichostatin A and doxorubicin is mediated via inhibition of AR expression, induction of protease activity, increased expression of p53, and proteolysis of p21.  相似文献   

13.
14.
Heterocyclic ketones as inhibitors of histone deacetylase   总被引:1,自引:0,他引:1  
Several heterocyclic ketones were investigated as potential inhibitors of histone deacetylase. Nanomolar inhibitors such as 22 and 25 were obtained, the anti-proliferative activity of which were shown to be mediated by HDAC inhibition.  相似文献   

15.
Inhibitors of histone deacetylases (HDAC) are emerging as a promising class of anti-cancer agents. The mercaptoacetoamide-based inhibitors are reported to be less toxic than hydroxamate and are worthy of further consideration. Therefore, we have designed a series of analogs as potential inhibitors of HDACs, in which the mercaptoacetamide group was replaced by (mercaptomethyl)fluoroalkene, and their HDAC inhibitory activity was evaluated. Subnanomolar inhibition was observed for all synthetic compounds.  相似文献   

16.
We have developed an efficient method for synthesizing candidate histone deacetylase (HDAC) inhibitors in 96-well plates, which are used directly in high-throughput screening. We selected building blocks having hydrazide, aldehyde and hydroxamic acid functionalities. The hydrazides were coupled with different aldehydes in DMSO. The resulting products have the previously identified ‘cap/linker/biasing element’ structure known to favor inhibition of HDACs. These compounds were assayed without further purification. HDAC8-selective inhibitors were discovered from this novel collection of compounds.  相似文献   

17.
A novel series of aroyl-pyrrolyl-hydroxy-amides (APHAs) active as histone deacetylase (HDAC) inhibitors has been reported. The new derivatives were designed by replacing the benzene ring of the prototype 1 with both aromatic and aliphatic, monocyclic and polycyclic rings (compounds 3a-i), or by inserting a number of substituents on the methylene linker of 1 (compounds 4a-l). Compounds 3a-i and 4a-l were active at sub-micromolar level against the maize deacetylases HD1-B (class I), HD1-A (class II), and HD2. Tested at 5 microM against human HDAC1 and HDAC4, 3b, 4a, and 4j showed significant HDAC1 inhibition, whereas on HDAC4 only 4a was highly effective. On the human leukemia U937 cell line, the same compounds did not alter the cell cycle phases and failed in inducing apoptosis. However, they displayed granulocytic differentiation at 5 microM, with 3b being the most potent (76% CD11c positive cells). Tested to evaluate their effects on histone H3 and alpha-tubulin acetylation, 3b and 4a showed high H3 acetylation, whereas 4a and 4b were the most potent with alpha-tubulin as a substrate.  相似文献   

18.
Trifluoromethyl ketones as inhibitors of histone deacetylase   总被引:1,自引:0,他引:1  
Trifluoromethyl ketones were found to be inhibitors of histone deacetylases (HDACs). Optimization of this series led to the identification of submicromolar inhibitors such as 20 that demonstrated antiproliferative effects against the HT1080 and MDA 435 cell lines.  相似文献   

19.
Alpha-keto ester and amides were found to be potent inhibitors of histone deacetylase. Nanomolar inhibitors against the isolated enzyme and sub-micromolar inhibitors of cellular proliferation were obtained. The alpha-keto amide 30 also exhibited significant anti-tumor effects in an in vivo tumor model.  相似文献   

20.
Cardiovascular insults such as myocardial infarction and chronic hypertension can trigger the heart to undergo a remodeling process characterized by myocyte hypertrophy, myocyte death and fibrosis, often resulting in impaired cardiac function and heart failure. Pathological cardiac remodeling is associated with inflammation, and therapeutic approaches targeting inflammatory cascades have shown promise in patients with heart failure. Small molecule histone deacetylase (HDAC) inhibitors block adverse cardiac remodeling in animal models, suggesting unforeseen potential for this class of compounds for the treatment of heart failure. In addition to their beneficial effects on myocardial cells, HDAC inhibitors have potent antiinflammatory actions. This review highlights the roles of HDACs in the heart and the potential for using HDAC inhibitors as broad-based immunomodulators for the treatment of human heart failure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号