首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microtubule-disruption (MTD) is often thought to arrest the mammalian cell cycle only during mitosis. However, MTD has also been demonstrated to arrest cells during interphase at a G(1)-phase point we call G(1)MTA. Microtubule integrity is now shown to be required for progression past G(1)MTA and the mammalian restriction-point. Neither p21(waf1) nor p27(kip1) are required for MTD-induced G(1)-arrest. Only p21(waf1) is crucial for normal G(1)MTA passage. The p21(waf1)-Chk1-cdc25C-cdc2-checkpoint-pathway is implicated in monitoring this passage. P21(waf1) deletion deregulates G(1)MTA transition and decreases MTD-G(1) arrest, possibly via Chk1 disregulation. Oncogene-induced overexpression of p21(waf1) produced opposite effects on the Chk1-cdc25C-cdc2 pathway and enhanced MTD-G(1) arrest. G(1)MTA thus represents a novel facet of mammalian G(1)/S checkpoint.  相似文献   

2.
DNA damage induces cell cycle arrest through both Chk1 and the p53 tumor suppressor protein, the latter arresting cells through induction of p21waf1 protein. Arrest permits cells to repair the damage and recover. The frequent loss of p53 in tumor cells makes them more dependent on Chk1 for arrest and survival. However, some p53 wild type tumor cell lines, such as HCT116 and U2OS, are also sensitive to inhibition of Chk1 due to attenuated p21waf1 induction upon DNA damage. The purpose of this study is to determine the cause of this attenuated p21waf1 protein induction. We find that neither the induction of p21waf1 mRNA nor protein half-life is sufficient to explain the low p21waf1 protein levels in HCT116 and U2OS cells. The induced mRNA associates with polysomes but little protein is made suggesting these two cell lines have a reduced rate of p21waf1 mRNA translation. This represents a novel mechanism for disruption of the p53-p21waf1 pathway as currently known mechanisms involve either mutation of p53 or reduction of p53 protein levels. As a consequence, this attenuated p21waf1 expression may render some p53 wild type tumors sensitive to a combination of DNA damage plus checkpoint inhibition.  相似文献   

3.
DNA damage induces cell cycle arrest through both Chk1 and the p53 tumor suppressor protein, the latter arresting cells through induction of p21waf1 protein. Arrest permits cells to repair the damage and recover. The frequent loss of p53 in tumor cells makes them more dependent on Chk1 for arrest and survival. However, some p53 wild type tumor cell lines, such as HCT116 and U2OS, are also sensitive to inhibition of Chk1 due to attenuated p21waf1 induction upon DNA damage. The purpose of this study is to determine the cause of this attenuated p21waf1 protein induction. We find that neither the induction of p21waf1 mRNA nor protein half-life is sufficient to explain the low p21waf1 protein levels in HCT116 and U2OS cells. The induced mRNA associates with polysomes but little protein is made suggesting these two cell lines have a reduced rate of p21waf1 mRNA translation. This represents a novel mechanism for disruption of the p53-p21waf1 pathway as currently known mechanisms involve either mutation of p53 or reduction of p53 protein levels. As a consequence, this attenuated p21waf1 expression may render some p53 wild type tumors sensitive to a combination of DNA damage plus checkpoint inhibition.  相似文献   

4.
前列腺素A2(PGA2)具有强的体内、外抗增殖活性,引起细胞周期阻滞,同时,可诱导cdk抑制物p21蛋白的表达,后者亦可介导多种细胞的G1阻滞.提示p21waf1/cip1在PGA2诱导的细胞周期阻滞中具有重要作用.主要介绍了近两年来有关p21waf1/cip1与转录因子E2F间的相互作用的研究,阐述p21waf1/cip1在PGA2介导的细胞周期阻滞中的作用机制.  相似文献   

5.
Parvoviruses halt cell cycle progression following initiation of their replication during S-phase and continue to replicate their genomes for extended periods of time in arrested cells. The parvovirus minute virus of mice (MVM) induces a DNA damage response that is required for viral replication and induction of the S/G2 cell cycle block. However, p21 and Chk1, major effectors typically associated with S-phase and G2-phase cell cycle arrest in response to diverse DNA damage stimuli, are either down-regulated, or inactivated, respectively, during MVM infection. This suggested that parvoviruses can modulate cell cycle progression by another mechanism. In this work we show that the MVM-induced, p21- and Chk1-independent, cell cycle block proceeds via a two-step process unlike that seen in response to other DNA-damaging agents or virus infections. MVM infection induced Chk2 activation early in infection which led to a transient S-phase block associated with proteasome-mediated CDC25A degradation. This step was necessary for efficient viral replication; however, Chk2 activation and CDC25A loss were not sufficient to keep infected cells in the sustained G2-arrested state which characterizes this infection. Rather, although the phosphorylation of CDK1 that normally inhibits entry into mitosis was lost, the MVM induced DDR resulted first in a targeted mis-localization and then significant depletion of cyclin B1, thus directly inhibiting cyclin B1-CDK1 complex function and preventing mitotic entry. MVM infection thus uses a novel strategy to ensure a pseudo S-phase, pre-mitotic, nuclear environment for sustained viral replication.  相似文献   

6.
7.
Besides the well‐understood DNA damage response via establishment of G2 checkpoint arrest, novel studies focus on the recovery from arrest by checkpoint override to monitor cell cycle re‐entry. The aim of this study was to investigate the role of Chk1 in the recovery from G2 checkpoint arrest in HCT116 (human colorectal cancer) wt, p53–/– and p21–/– cell lines following H2O2 treatment. Firstly, DNA damage caused G2 checkpoint activation via Chk1. Secondly, overriding G2 checkpoint led to (i) mitotic slippage, cell cycle re‐entry in G1 and subsequent G1 arrest associated with senescence or (ii) premature mitotic entry in the absence of p53/p21WAF1 causing mitotic catastrophe. We revealed subtle differences in the initial Chk1‐involved G2 arrest with respect to p53/p21WAF1: absence of either protein led to late G2 arrest instead of the classic G2 arrest during checkpoint initiation, and this impacted the release back into the cell cycle. Thus, G2 arrest correlated with downstream senescence, but late G2 arrest led to mitotic catastrophe, although both cell cycle re‐entries were linked to upstream Chk1 signalling. Chk1 knockdown deciphered that Chk1 defines long‐term DNA damage responses causing cell cycle re‐entry. We propose that recovery from oxidative DNA damage‐induced G2 arrest requires Chk1. It works as cutting edge and navigates cells to senescence or mitotic catastrophe. The decision, however, seems to depend on p53/p21WAF1. The general relevance of Chk1 as an important determinant of recovery from G2 checkpoint arrest was verified in HT29 colorectal cancer cells.  相似文献   

8.
Checkpoints respond to DNA damage by arresting the cell cycle to provide time for facilitating repair. In mammalian cells, the G(2) checkpoint prevents the Cdc25C phosphatase from removing inhibitory phosphate groups from the mitosis-promoting kinase Cdc2. Both Chk1 and Chk2, the checkpoint kinases, can phosphorylate Cdc25C and inactivate its in vitro phosphatase activity. Therefore, both Chk1 and Chk2 are thought to regulate the activation of the G(2) checkpoint. Here we report that A1-5, a transformed rat embryo fibroblast cell line, shows much more radioresistance associated with a much stronger G(2) arrest response when compared with its counterpart, B4, although A1-5 and B4 cells have a similar capacity for nonhomologous end-joining DNA repair. These phenotypes of A1-5 cells are accompanied by a higher Chk1 expression and a higher phosphorylation of Cdc2. On the other hand, Chk2 expression increases slightly following radiation; however, it has no difference between A1-5 and B4 cells. Caffeine or UCN-01 abolishes the extreme radioresistance with the strong G(2) arrest and at the same time reduces the phosphorylation of Cdc2 in A1-5 cells. In addition, Chk1 but not Chk2 antisense oligonucleotide sensitizes A1-5 cells to radiation-induced killing and reduces the G(2) arrest of the cells. Taken together these results suggest that the Chk1/Cdc25C/Cdc2 pathway is the major player for the radioresistance with G(2) arrest in A1-5 cells.  相似文献   

9.
Oncogenic activation in primary murine fibroblasts initiates a senescence-like cell cycle arrest that depends on the p53 tumor suppressor pathway. Conditional p53 activation efficiently induced a reversible cell cycle arrest but was unable to induce features of senescence. In contrast, coexpression of oncogenic ras with p53 produced an irreversible cell cycle arrest that displayed features of cellular senescence. Introduction of a conditional murine p53 allele (p53val135) into double p53/p21-null mouse embryonic fibroblasts showed that p21waf1 was not required for this effect, since p53-/-;p21-/- double-null cells undergo terminal growth arrest with features of senescence following coexpression of oncogenic Ras and p53. Our results indicate that oncogenic activation of the Ras pathway in murine fibroblasts converts p53 into a senescence inducer through a p21waf1-independent mechanism.  相似文献   

10.
11.
Wang Y  Liu Q  Liu Z  Li B  Sun Z  Zhou H  Zhang X  Gong Y  Shao C 《Mutation research》2012,734(1-2):20-29
Berberine has been shown to possess anti-tumor activity against a wide spectrum of cancer cells. It inhibits cancer cell proliferation by inducing cell cycle arrest, at G1 and/or G2/M, and apoptosis. While it has been documented that berberine induces G1 arrest by activating the p53-p21 cascade, it remains unclear what mechanism underlies the berberine-induced G2/M arrest, which is p53-independent. In this study, we tested the anti-proliferative effect of berberine on murine prostate cancer cell line RM-1 and characterized the underlying mechanisms. Berberine dose-dependently induced DNA double-strand breaks and apoptosis. At low concentrations, berberine was observed to induce G1 arrest, concomitant with the activation of p53-p21 cascade. Upon exposure to berberine at a higher concentration (50μM) for 24h, cells exhibited G2/M arrest. Pharmacological inhibition of ATM by KU55933, or Chk1 by UCN-01, could efficiently abrogate the G2/M arrest in berberine-treated cells. Downregulation of Chk1 by RNA interference also abolished the G2/M arrest caused by berberine, confirming the role of Chk1 in the pathway leading to G2/M arrest. Abrogation of G2/M arrest by ATM inhibition forced more cells to undergo apoptosis in response to berberine treatment. Chk1 inhibition by UCN-01, on the other hand, rendered cells more sensitive to berberine only when p53 was inhibited. Our results suggest that combined administration of berberine and caffeine, or other ATM inhibitor, may accelerate the killing of cancer cells.  相似文献   

12.
Checkpoint kinases Chk1 and Chk2 are two key components in the DNA damage-activated checkpoint signaling pathways. To distinguish the roles of Chk1 and Chk2 in S and G2 checkpoints after DNA damage, derivatives of the human breast cancer cell line MDA-MB-231 were established that express short hairpin RNAs to selectively suppress Chk1 or Chk2 expression. DNA damage was induced with the topoisomerase I inhibitor SN38 which arrests cells in S or G2 phase depending on concentration. Depletion of Chk1 resulted in loss of S phase arrest upon incubation with SN38, but the cells still arrested in G2. Suppression of Chk2 had no impact on cell cycle arrest, while cells concurrently suppressed for both Chk1 and Chk2 still arrested primarily in G2 suggesting the presence of an alternate checkpoint regulator. One critical target for Chk1 is Cdc25A which is phosphorylated and degraded to prevent cell cycle progression. Cells arrested in G2 in the absence of Chk1/Chk2 still showed regulation of Cdc25A consistent with the action of an alternate kinase. One candidate for an alternate checkpoint kinase is MAPKAPK2 (MK2), yet this kinase was minimally activated by DNA damage and its inhibition did not facilitate either S or G2 progression. Furthermore, we were unable to substantiate the recent observation that the Chk1 inhibitor UCN-01 inhibits MK2. These results show that Chk1, but neither Chk2 nor MK2, is an important regulator of S phase arrest, and suggest that an additional kinase can contribute to the G2 arrest.  相似文献   

13.
The mechanisms by which environmental stress regulates cell cycle progression are poorly understood. In fission yeast, we show that Srk1 kinase, which associates with the stress-activated p38/Sty1 MAP kinase, regulates the onset of mitosis by inhibiting the Cdc25 phosphatase. Srk1 is periodically active in G2, and its overexpression causes cell cycle arrest in late G2 phase, whereas cells lacking srk1 enter mitosis prematurely. We find that Srk1 interacts with and phosphorylates Cdc25 at the same sites phosphorylated by the Chk1 and Cds1 (Chk2) kinases and that this phosphorylation is necessary for Srk1 to delay mitotic entry. Phosphorylation by Srk1 causes Cdc25 to bind to Rad24, a 14-3-3 protein family member, and accumulation of Cdc25 in the cytoplasm. However, Srk1 does not regulate Cdc25 in response to replication arrest or DNA damage but, rather, during a normal cell cycle and in response to nongenotoxic environmental stress.  相似文献   

14.
15.
16.
In this study, we determined the cytotoxic effects of piperine, a major constituent of black and long pepper in melanoma cells. Piperine treatment inhibited the growth of SK MEL 28 and B16 F0 cells in a dose and time-dependent manner. The growth inhibitory effects of piperine were mediated by cell cycle arrest of both the cell lines in G1 phase. The G1 arrest by piperine correlated with the down-regulation of cyclin D1 and induction of p21. Furthermore, this growth arrest by piperine treatment was associated with DNA damage as indicated by phosphorylation of H2AX at Ser139, activation of ataxia telangiectasia and rad3-related protein (ATR) and checkpoint kinase 1 (Chk1). Pretreatment with AZD 7762, a Chk1 inhibitor not only abrogated the activation of Chk1 but also piperine mediated G1 arrest. Similarly, transfection of cells with Chk1 siRNA completely protected the cells from G1 arrest induced by piperine. Piperine treatment caused down-regulation of E2F1 and phosphorylation of retinoblastoma protein (Rb). Apoptosis induced by piperine was associated with down-regulation of XIAP, Bid (full length) and cleavage of Caspase-3 and PARP. Furthermore, our results showed that piperine treatment generated ROS in melanoma cells. Blocking ROS by tiron protected the cells from piperine mediated cell cycle arrest and apoptosis. These results suggest that piperine mediated ROS played a critical role in inducing DNA damage and activation of Chk1 leading to G1 cell cycle arrest and apoptosis.  相似文献   

17.
Akt is perhaps the most frequently activated oncoprotein in human cancers. Overriding cell cycle checkpoint in combination with the inhibition of apoptosis are two principal requirements for predisposition to cancer. Here we show that the activation of Akt is sufficient to promote these two principal processes, by inhibiting Chk1 activation with concomitant inhibition of apoptosis. These activities of Akt cannot be recapitulated by the knockdown of Chk1 alone or by overexpression of Bcl2. Rather the combination of Chk1 knockdown and Bcl2 overexpression is required to recapitulate Akt activities. Akt was shown to directly phosphorylate Chk1. However, we found that Chk1 mutants in the Akt phosphorylation sites behave like wild-type Chk1 in mediating G2 arrest, suggesting that the phosphorylation of Chk1 by Akt is either dispensable for Chk1 activity or insufficient by itself to exert an effect on Chk1 activity. Here we report a new mechanism by which Akt affects G2 cell cycle arrest. We show that Akt inhibits BRCA1 function that induces G2 cell cycle arrest. Akt prevents the translocation of BRCA1 to DNA damage foci and, thereby, inhibiting the activation of Chk1 following DNA damage.  相似文献   

18.
SN1 DNA methylating agents such as the nitrosourea N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) elicit a G2/M checkpoint response via a mismatch repair (MMR) system-dependent mechanism; however, the exact nature of the mechanism governing MNNG-induced G2/M arrest and how MMR mechanistically participates in this process are unknown. Here, we show that MNNG exposure results in activation of the cell cycle checkpoint kinases ATM, Chk1, and Chk2, each of which has been implicated in the triggering of the G2/M checkpoint response. We document that MNNG induces a robust, dose-dependent G2 arrest in MMR and ATM-proficient cells, whereas this response is abrogated in MMR-deficient cells and attenuated in ATM-deficient cells treated with moderate doses of MNNG. Pharmacological and RNA interference approaches indicated that Chk1 and Chk2 are both required components for normal MNNG-induced G2 arrest. MNNG-induced nuclear exclusion of the cell cycle regulatory phosphatase Cdc25C occurred in an MMR-dependent manner and was compromised in cells lacking ATM. Finally, both Chk1 and Chk2 interact with the MMR protein MSH2, and this interaction is enhanced after MNNG exposure, supporting the notion that the MMR system functions as a molecular scaffold at the sites of DNA damage that facilitates activation of these kinases.  相似文献   

19.
In non-malignant RWPE-1 prostate epithelial cells signaling by the nuclear receptor Vitamin D Receptor (VDR, NR1I1) induces cell cycle arrest through targets including CDKN1A (encodes p21((waf1/cip1))). VDR dynamically induced individual histone modification patterns at three VDR binding sites (R1, 2, 3) on the CDKN1A promoter. The magnitude of these modifications was specific to each phase of the cell cycle. For example, H3K9ac enrichment occurred rapidly only at R2, whereas parallel accumulation of H3K27me3 occurred at R1; these events were significantly enriched in G(1) and S phase cells, respectively. The epigenetic events appeared to allow VDR actions to combine with p53 to enhance p21((waf1/cip1)) activation further. In parallel, VDR binding to the MCM7 gene induced H3K9ac enrichment associated with rapid mRNA up-regulation to generate miR-106b and consequently regulate p21((waf1/cip1)) expression. We conclude that VDR binding site- and promoter-specific patterns of histone modifications combine with miRNA co-regulation to form a VDR-regulated feed-forward loop to control p21((waf1/cip1)) expression and cell cycle arrest. Dissection of this feed-forward loop in a non-malignant prostate cell system illuminates mechanisms of sensitivity and therefore possible resistance in prostate and other VDR responsive cancers.  相似文献   

20.
Chk1, a nuclear DNA damage/replication G2 checkpoint kinase, phosphorylates Cdc25 and causes its nuclear exclusion in yeast and mammalian cells, thereby arresting the cell at the G2 phase until DNA repair/replication is completed. Chk1 is also involved, at least in part, in the natural G2 arrest of immature Xenopus oocytes, but it is unknown how Chk1 inhibits Cdc25 function and undergoes regulation during oocyte maturation. By using enucleated oocytes, we show here that Chk1 inhibits Cdc25 function in the cytoplasm of G2-arrested oocytes and that Cdc25 is activated exclusively in the cytoplasm of maturing oocytes. Moreover, we show that Chk1 activity is not appreciably altered during maturation, being maintained at basal levels, and that C-terminal truncation mutants of Chk1 have very high kinase activities, strong abilities to inhibit maturation, and altered subcellular localization in oocytes. These results, together with other results, suggest that the Chk1/Cdc25 pathway is involved cytoplasmically in G2 arrest of Xenopus oocytes, but moderately and independent of the G2 checkpoint, and that the C-terminal region of Chk1 negatively regulates its kinase activity and also determines its subcellular localization. Based on these results, we discuss the possibility that Chk1 (with the basal activity) may function as an ordinary regulator of Cdc25 in oocytes (and in other cell types) and that Chk1 might be hyperactivated in response to the G2 checkpoint via its dramatic conformational change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号