首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

In a recent study, we demonstrated the ability of lovastatin, a potent inhibitor of mevalonate synthesis, to inhibit the function of the epidermal growth factor receptor (EGFR). Lovastatin attenuated ligand-induced receptor activation and downstream signaling through the PI3K/AKT pathway. Combining lovastatin with gefitinib, a potent EGFR inhibitor, induced synergistic cytotoxicity in a variety of tumor derived cell lines. The vascular endothelial growth factor receptor (VEGFR) and EGFR share similar activation, internalization and downstream signaling characteristics.

Methodology/Principal Findings

The VEGFRs, particularly VEGFR-2 (KDR, Flt-1), play important roles in regulating tumor angiogenesis by promoting endothelial cell proliferation, survival and migration. Certain tumors, such as malignant mesothelioma (MM), also express both the VEGF ligand and VEGFRs that act in an autocrine loop to directly stimulate tumor cell growth and survival. In this study, we have shown that lovastatin inhibits ligand-induced VEGFR-2 activation through inhibition of receptor internalization and also inhibits VEGF activation of AKT in human umbilical vein endothelial cells (HUVEC) and H28 MM cells employing immunofluorescence and Western blotting. Combinations of lovastatin and a VEGFR-2 inhibitor showed more robust AKT inhibition than either agent alone in the H28 MM cell line. Furthermore, combining 5 µM lovastatin treatment, a therapeutically relevant dose, with two different VEGFR-2 inhibitors in HUVEC and the H28 and H2052 mesothelioma derived cell lines demonstrated synergistic cytotoxicity as demonstrated by MTT cell viability and flow cytometric analyses.

Conclusions/Significance

These results highlight a novel mechanism by which lovastatin can regulate VEGFR-2 function and a potential therapeutic approach for MM through combining statins with VEGFR-2 inhibitors.  相似文献   

2.
Abstract

Vascular endothelial growth factor receptors (VEGFR) are considered essential for angiogenesis. The VEGFR‐family proteins consist of VEGFR‐1/Flt‐1, VEGFR‐2/KDR/Flk‐1, and VEGFR‐3/Flt‐4. Among these, VEGFR‐2 is thought to be principally responsible for angiogenesis. However, the precise role of VEGFRs1–3 in endothelial cell biology and angiogenesis remains unclear due in part to the lack of VEGFR‐specific inhibitors. We used the newly described, highly selective anilinoquinazoline inhibitor of VEGFR‐2 tyrosine kinase, ZM323881 (5‐[[7‐(benzyloxy) quinazolin‐4‐yl]amino]‐4‐fluoro‐2‐methylphenol), to explore the role of VEGFR‐2 in endothelial cell function. Consistent with its reported effects on VEGFR‐2 [IC(50) < 2 nM], ZM323881 inhibited activation of VEGFR‐2, but not of VEGFR‐1, epidermal growth factor receptor (EGFR), platelet‐derived growth factor receptor (PDGFR), or hepatocyte growth factor (HGF) receptor. We studied the effects of VEGF on human aortic endothelial cells (HAECs), which express VEGFR‐1 and VEGFR‐2, but not VEGFR‐3, in the absence or presence of ZM323881. Inhibition of VEGFR‐2 blocked activation of extracellular regulated‐kinase, p38, Akt, and endothelial nitric oxide synthetase (eNOS) by VEGF, but did not inhibit p38 activation by the VEGFR‐1‐specific ligand, placental growth factor (PlGF). Inhibition of VEGFR‐2 also perturbed VEGF‐induced membrane extension, cell migration, and tube formation by HAECs. Vascular endothelial growth factor receptor‐2 inhibition also reversed VEGF‐stimulated phosphorylation of CrkII and its Src homology 2 (SH2)‐binding protein p130Cas, which are known to play a pivotal role in regulating endothelial cell migration. Inhibition of VEGFR‐2 thus blocked all VEGF‐induced endothelial cellular responses tested, supporting that the catalytic activity of VEGFR‐2 is critical for VEGF signaling and/or that VEGFR‐2 may function in a heterodimer with VEGFR‐1 in human vascular endothelial cells.  相似文献   

3.
Investigations over the last decade have established the essential role of growth factors and their receptors during angiogenesis and carcinogenesis. The vascular endothelial growth factor receptor (VEGFR) family in mammals contains three members, VEGFR-1 (Flt-1), VEGFR-2 (KDR/Flk-1) and VEGFR-3 (Flt-4), which are transmembrane tyrosine kinase receptors that regulate the formation of blood and lymphatic vessels. In the early 1990s, the above VEGFR was structurally characterized by cDNA cloning. Among these three receptors, VEGFR-2 is generally recognized to have a principal role in mediating VEGF-induced responses. VEGFR-2 is considered as the earliest marker for endothelial cell development. Importantly, VEGFR-2 directly regulates tumor angiogenesis. Therefore, several inhibitors of VEGFR-2 have been developed and many of them are now in clinical trials. In addition to targeting endothelial cells, the VEGF/VEGFR-2 system works as an essential autocrine/paracrine process for cancer cell proliferation and survival. Recent studies mark the continuous and increased interest in this related, but distinct, function of VEGF/VEGFR-2 in cancer cells: the autocrine/paracrine loop. Several mechanisms regulate VEGFR-2 levels and modulate its role in tumor angiogenesis and physiologic functions, i.e.: cellular localization/trafficking, regulation of cis-elements of promoter, epigenetic regulation and signaling from Notch, cytokines/growth factors and estrogen, etc. In this review, we will focus on updated information regarding VEGFR-2 research with respect to the molecular mechanisms of VEGFR-2 regulation in human breast cancer. Investigations in the activation, function, and regulation of VEGFR-2 in breast cancer will allow the development of new pharmacological strategies aimed at directly targeting cancer cell proliferation and survival.  相似文献   

4.
Pain is the major reason that patients suffering from osteoarthritis (OA) seek medical care. We found that vascular endothelial growth factors (VEGFs) mediate signaling in OA pain pathways. To determine the specific contributions of VEGFs and their receptors (VEGFRs) to joint pathology and pain transmission during OA progression, we studied intra-articular (IA) injections of VEGF ligands into murine knee joints. Only VEGF ligands specific for the activation of VEGFR1, but not VEGFR2, induced allodynia within 30 min. Interventions in OA by inhibitors of VEGFRs were done in vivo using a preclinical murine OA model by IA injections of selective inhibitors of VEGFR1/VEGFR2 kinase (pazopanib) or VEGFR2 kinase (vandetanib). OA phenotypes were evaluated using pain-associated murine behavioral tests and histopathologic analyses. Alterations in VEGF/VEGFR signaling by drugs were determined in knee joints, dorsal root ganglia, and spinal cord by immunofluorescence microscopy. Pazopanib immediately relieved OA pain by interfering with pain transmission pathways. Pain reduction by vandetanib was mainly due to the inhibition of cartilage degeneration by suppressing VEGFR2 expression. In conclusion, IA administration of pazopanib, which simultaneously inhibits VEGFR1 and VEGFR2, can be developed as an ideal OA disease-modifying drug that rapidly reduces joint pain and simultaneously inhibits cartilage degeneration.  相似文献   

5.
6.
Placental growth factor (PlGF) competes with vascular endothelial growth factor (VEGF) for binding to VEGF receptor (VEGFR)-1 but does not bind VEGFR2. Experiments show that PlGF can augment the response to VEGF in pathological angiogenesis and in models of endothelial cell survival, migration, and proliferation. This synergy has been hypothesized to be due to a combination of the following: signaling by PlGF through VEGFR1 and displacement of VEGF from VEGFR1 to VEGFR2 by PlGF, causing increased signaling through VEGFR2. In this study, the relative contribution of PlGF-induced VEGF displacement to the synergy is quantified using a mathematical model of ligand-receptor binding to examine the effect on ligand-receptor complex formation of VEGF and PlGF acting together. Parameters specific to the VEGF-PlGF system are used based on existing data. The model is used to simulate in silico a specific in vitro experiment in which VEGF-PlGF synergy is observed. We show that, whereas a significant change in the formation of endothelial surface growth factor-VEGFR1 complexes is predicted in the presence of PlGF, the increase in the number of VEGFR2-containing signaling complexes is less significant; these results were shown to be robust to significant variation in the kinetic parameters of the model. Synergistic effects observed in that experiment thus appear unlikely to be due to VEGF displacement but to a shift from VEGF-VEGFR1 to PlGF-VEGFR1 complexes and an increase in total VEGFR1 complexes. These results suggest that VEGFR1 signaling can be functional in adult-derived endothelial cells.  相似文献   

7.
MicroRNAs (miRNAs) have been demonstrated to participate in many important cellular processes including radiosensitization. VEGF family, an important regulator of angiogenesis, also plays a crucial role in the regulation of cancer cell radiosensitivity. VEGFR2 mediates the major growth and permeability actions of VEGF in a paracrine/autocrine manner. MiR-200c, at the nexus of epithelial-mesenchymal transition (EMT), is predicted to target VEGFR2. The purpose of this study is to test the hypothesis that regulation of VEGFR2 pathway by miR-200c could modulate the radiosensitivity of cancer cells. Bioinformatic analysis, luciferase reporter assays and biochemical assays were carried out to validate VEGFR2 as a direct target of miR-200c. The radiosensitizing effects of miR-200c on A549 cells were determined by clonogenic assays. The downstream regulating mechanism of miR-200c was explored with western blotting assays, FCM, tube formation assays and migration assays. We identified VEGFR2 as a novel target of miR-200c. The ectopic miR-200c increased the radiosensitivity of A549 while miR-200c down-regulation decreased it. Besides, we proved that miR-200c radiosensitized A549 cells by targeting VEGF-VEGFR2 pathway specifically, thus leading to inhibition of its downstream pro-survival signaling transduction and angiogenesis, and serves as a potential target for radiosensitizition research.  相似文献   

8.
The VEGF/VPF (vascular endothelial growth factor/vascular permeability factor) ligands and receptors are crucial regulators of vasculogenesis, angiogenesis, lymphangiogenesis and vascular permeability in vertebrates. VEGF-A, the prototype VEGF ligand, binds and activates two tyrosine kinase receptors: VEGFR1 (Flt-1) and VEGFR2 (KDR/Flk-1). VEGFR1, which occurs in transmembrane and soluble forms, negatively regulates vasculogenesis and angiogenesis during early embryogenesis, but it also acts as a positive regulator of angiogenesis and inflammatory responses, playing a role in several human diseases such as rheumatoid arthritis and cancer. The soluble VEGFR1 is overexpressed in placenta in preeclampsia patients. VEGFR2 has critical functions in physiological and pathological angiogenesis through distinct signal transduction pathways regulating proliferation and migration of endothelial cells. VEGFR3, a receptor for the lymphatic growth factors VEGF-C and VEGF-D, but not for VEGF-A, regulates vascular and lymphatic endothelial cell function during embryogenesis. Loss-of-function variants of VEGFR3 have been identified in lymphedema. Formation of tumor lymphatics may be stimulated by tumor-produced VEGF-C, allowing increased spread of tumor metastases through the lymphatics. Mapping the signaling system of these important receptors may provide the knowledge necessary to suppress specific signaling pathways in major human diseases.  相似文献   

9.
《Epigenetics》2013,8(2):191-200
We evaluated whether the inhibitory effects of vascular endothelial growth factor (VEGF)-targeted drugs on the proliferation of cancer cells differed according to VEGF receptor (VEGFR) genes, Flt1 and KDR, promoter methylation status. Five hyper-VEGFR-methylation and six no-VEGFR-methylation cancer cells were used for the present study, together with human umbilical endothelial cells (HUVECs) as a control. No-VEGFR-methylation cancer cells showed higher expression of Flt1 and KDR than hyper-VEGFR-methylation cancer cells. Hyper-VEGFR-methylation cancer cells only showed increased expression and protein levels of Flt1 and KDR after treatment with the demethylase 5-aza-2’-deoxycytidine. Two drugs (a VEGF-specific-antibody, bevacizumab, and a KDR-specific-antibody) targeting extracellular VEGF-VEGFR signaling and two VEGF-specific-tyrosine kinase inhibitors (PTK/ZK and sunitinib) targeting intracellular VEGFR signaling were used in the cell proliferation assay. HUVECs showed dose- and time-dependent proliferation decrease with all tested drugs over a 72 h incubation period. No- or hyper-VEGFR-methylation cancer cells showed no significant proliferation differences after treatment with VEGF-specific-antibody or VEGFR2-specific-antibody. After PTK/ZK or sunitinib treatment, no-VEGFR-methylation cancer cells showed dose- or time-dependent decreases in proliferation. Hyper-VEGFR-methylation cancer cells also showed proliferation inhibition by VEGF-specific-tyrosine kinase inhibitors after demethylation of Flt1 and KDR. Proliferation inhibition synergistically increased after combination of demethylation with PTK/ZK in hyper-VEGF-methylation cancer cells. We observed that intracellular targeting of VEGF-VEGFR signaling could be more effective than extracellular targeting of the pathway in the suppression of proliferation of some cancer cells. In particular, the efficacy of intracellular targeting of VEGF-specific-tyrosine kinase inhibitors might be influenced by the epigenetic alteration of VEGFRs.  相似文献   

10.
Impaired Ag-presenting function in dendritic cells (DCs) due to abnormal differentiation is an important mechanism of tumor escape from immune control. A major role for vascular endothelial growth factor (VEGF) and its receptors, VEGFR1/Flt-1 and VEGFR2/KDR/Flk-1, has been documented in hemopoietic development. To study the roles of each of these receptors in DC differentiation, we used an in vitro system of myeloid DC differentiation from murine embryonic stem cells. Exposure of wild-type, VEGFR1(-/-), or VEGFR2(-/-) embryonic stem cells to exogenous VEGF or the VEGFR1-specific ligand, placental growth factor, revealed distinct roles of VEGF receptors. VEGFR1 is the primary mediator of the VEGF inhibition of DC maturation, whereas VEGFR2 tyrosine kinase signaling is essential for early hemopoietic differentiation, but only marginally affects final DC maturation. SU5416, a VEGF receptor tyrosine kinase inhibitor, only partially rescued the mature DC phenotype in the presence of VEGF, suggesting the involvement of both tyrosine kinase-dependent and independent inhibitory mechanisms. VEGFR1 signaling was sufficient for blocking NF-kappaB activation in bone marrow hemopoietic progenitor cells. VEGF and placental growth factor affect the early stages of myeloid/DC differentiation. The data suggest that therapeutic strategies attempting to reverse the immunosuppressive effects of VEGF in cancer patients might be more effective if they specifically targeted VEGFR1.  相似文献   

11.
《MABS-AUSTIN》2013,5(6):1195-1204
Vascular endothelial growth factor (VEGF) and its receptors are considered the primary cause of tumor-induced angiogenesis. Specifically, VEGFR-2/kinase insert domain receptor (KDR) is part of the major signaling pathway that plays a significant role in tumor angiogenesis, which is associated with the development of various types of tumor and metastasis. In particular, KDR is involved in tumor angiogenesis as well as cancer cell growth and survival. In this study, we evaluated the therapeutic potential of TTAC-0001, a fully human antibody against VEGFR-2/KDR. To assess the efficacy of the antibody and pharmacokinetic (PK) relationship in vivo, we tested the potency of TTAC-0001 in glioblastoma and colorectal cancer xenograft models. Antitumor activity of TTAC-0001 in preclinical models correlated with tumor growth arrest, induction of tumor cell apoptosis, and inhibition of angiogenesis. We also evaluated the combination effect of TTAC-0001 with a chemotherapeutic agent in xenograft models. We were able to determine the relationship between PK and the efficacy of TTAC-0001 through in vivo single-dose PK study. Taken together, our data suggest that targeting VEGFR-2 with TTAC-0001 could be a promising approach for cancer treatment.  相似文献   

12.
Vascular endothelial growth factor (VEGF) and its receptors are considered the primary cause of tumor-induced angiogenesis. Specifically, VEGFR-2/kinase insert domain receptor (KDR) is part of the major signaling pathway that plays a significant role in tumor angiogenesis, which is associated with the development of various types of tumor and metastasis. In particular, KDR is involved in tumor angiogenesis as well as cancer cell growth and survival. In this study, we evaluated the therapeutic potential of TTAC-0001, a fully human antibody against VEGFR-2/KDR. To assess the efficacy of the antibody and pharmacokinetic (PK) relationship in vivo, we tested the potency of TTAC-0001 in glioblastoma and colorectal cancer xenograft models. Antitumor activity of TTAC-0001 in preclinical models correlated with tumor growth arrest, induction of tumor cell apoptosis, and inhibition of angiogenesis. We also evaluated the combination effect of TTAC-0001 with a chemotherapeutic agent in xenograft models. We were able to determine the relationship between PK and the efficacy of TTAC-0001 through in vivo single-dose PK study. Taken together, our data suggest that targeting VEGFR-2 with TTAC-0001 could be a promising approach for cancer treatment.  相似文献   

13.
14.
15.
16.
Glioblastoma (GBM) is a highly vascularized malignant tumor that depends on new blood vessel formation. Small molecules targeting the angiogenic process may be an effective anti-GBM therapeutic strategy. We previously demonstrated that RhoJ promoted the progression and invasion of GBM. RhoJ has also been shown to be expressed in endothelial cells and plays an important role in regulating endothelial cell migration and tumor angiogenesis. Therefore, we aimed to evaluate the role and mechanism of actions of RhoJ in GBM angiogenesis. We analyzed the expression of RhoJ in different grade gliomas and investigated its role in GBM angiogenesis in vivo and in vitro. Furtherly, RNA sequencing (RNA-seq), Western blotting and immunofluorescence were performed to identify the molecular mechanism of RhoJ in regulating endothelial cell behavior and GBM angiogenesis. Here, we found that silencing RhoJ resulted in inhibition of HUVEC cell migration and blood vessel formation. Overexpression of RhoJ promoted the expression of CD31, EpCAM and moesin, suggesting RhoJ facilitated angiogenesis and the malignant progression of GBM. RNA-seq data showed that VEGF/TNF signaling pathway positively regulated RhoJ. The expression levels of RhoJ was upregulated with the stimulation of VEGF, and reduced by the treatment of JNK inhibitor SP600125. It was also found that the activity of PAK-BRAF-ERK was down-regulated upon RhoJ and JNK knockdown. In conclusion, these results suggested that RhoJ plays an essential role in regulating GBM angiogenesis through the JNK/VEGFR2-PAK-ERK signaling pathway and there might exist a VEGF-JNK/ERK-VEGF circuitry. Thus, RhoJ may be a candidate therapeutic target for anti-angiogenesis treatment in GBM.  相似文献   

17.
Glioblastoma multiforme (GBM) is the most common and lethal type of primary malignant brain tumor. In recent years, increasing reports suggest that discovery of microRNAs (miRNAs) might provide a novel therapeutical target for human cancers, including GBM. The expression and roles of microRNA-183 (miR-183) has been explored in several types of human cancers, including in GBM, and plays important roles in tumor initiation and progression. However, its biological functions in GBM remain largely unknown. In this study, we demonstrated that miR-183 was significantly up-regulated in astrocytoma tissues and glioblastoma cell lines. Introduction of miR-183 mimics into U251 cells could promoted, while its antisense oligos inhibited cell proliferation and invasion. Moreover, we identified neurofilament light polypeptide (NEFL) as a novel target gene of miR-183. The expression levels of NEFL are inversely correlated with that of miR-183 in human astrocytoma clinical specimens. In addition, NEFL-siRNA could significantly attenuate the inhibitory effects of knockdown miR-183 on the proliferation and invasion of U251 cells via mTOR signaling pathway. Overall, This study revealed that miR-183 promotes glioma cell proliferation by targeting NEFL, and also demonstrated that miR-183 could be a potential target for GBM treatment.  相似文献   

18.
Vascular endothelial growth factor (VEGF)-D binds to VEGF receptors (VEGFR) VEGFR2/KDR and VEGFR3/Flt4, but the signaling mechanisms mediating its biological activities in endothelial cells are poorly understood. Here we investigated the mechanism of action of VEGF-D, and we compared the signaling pathways and biological responses induced by VEGF-D and VEGF-A in endothelial cells. VEGF-D induced KDR and phospholipase C-gamma tyrosine phosphorylation more slowly and less effectively than VEGF-A at early times but had a more sustained effect and was as effective as VEGF-A after 60 min. VEGF-D activated extracellular signal-regulated protein kinases 1 and 2 with similar efficacy but slower kinetics compared with VEGF-A, and this effect was blocked by inhibitors of protein kinase C and mitogen-activated protein kinase kinase. In contrast to VEGF-A, VEGF-D weakly stimulated prostacyclin production and gene expression, had little effect on cell proliferation, and stimulated a smaller and more transient increase in intracellular [Ca(2+)]. VEGF-D induced strong but more transient phosphatidylinositol 3-kinase (PI3K)-mediated Akt activation and increased PI3K-dependent endothelial nitric-oxide synthase phosphorylation and cell survival more weakly. VEGF-D stimulated chemotaxis via a PI3K/Akt- and endothelial nitric-oxide synthase-dependent pathway, enhanced protein kinase C- and PI3K-dependent endothelial tubulogenesis, and stimulated angiogenesis in a mouse sponge implant model less effectively than VEGF-A. VEGF-D-induced signaling and biological effects were blocked by the KDR inhibitor SU5614. The finding that differential KDR activation by VEGF-A and VEGF-D has distinct consequences for endothelial signaling and function has important implications for understanding how multiple ligands for the same VEGF receptors can generate ligand-specific biological responses.  相似文献   

19.
Even though glioblastoma, WHO grade IV (GBM) is one of the most devastating adult cancers, current treatment regimens have not led to any improvements in patient life expectancy or quality of life. The constitutively active EGFRvIII receptor is one of the most commonly mutated proteins in GBM and has been linked to radiation and chemotherapeutic resistance. To define the mechanisms by which this protein alters cell physiology, we have recently performed a phosphoproteomic analysis of EGFRvIII signaling networks in GBM cells. The results of this study provided important insights into the biology of this mutated receptor, including oncogene dose effects and differential utilization of signaling pathways. Moreover, clustering of the phosphoproteomic data set revealed a previously undescribed crosstalk between EGFRvIII and the c-Met receptor. Treatment of the cells with a combination employing both EGFR and c-Met kinase inhibitors dramatically decreased cell viability in vitro. In this perspective, we highlight the use of systems biology as a tool to better understand the molecular basis of GBM tumor biology as well as to uncover non-intuitive candidates for therapeutic target validation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号