首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Inflammation is not only a defensive mechanism against microbial invasion, but also frequently represents a critical response to tissue injury under sterile conditions. It is now well established that tissue injury leads to the release of endogenous molecules of intra- and extracellular origin acting as damage-associated molecular patterns (DAMPs). The small leucine-rich proteoglycans (SLRPs) can act as powerful DAMPs following their proteolytical release from the extracellular matrix. Recent investigations of SLRP signaling networks revealed new levels of complexity, showing that SLRPs can cluster different types of receptors and orchestrate a host of downstream signaling events. This review will summarize the evidence for the multifunctional proinflammatory signaling properties of the two archetypal SLRPs, biglycan and decorin. These secreted proteoglycans link the innate to the adaptive immune response and operate in a broad biological context, encompassing microbial defense, tumor growth and autoimmunity.  相似文献   

2.
Inflammation is a highly regulated biological response of the immune system that is triggered by assaulting pathogens or endogenous alarmins. It is now well established that some soluble extracellular matrix constituents, such as small leucine-rich proteoglycans (SLRPs), can act as danger signals and trigger aseptic inflammation by interacting with innate immune receptors. SLRP inflammatory signaling cascade goes far beyond its canonical function. By choosing specific innate immune receptors, coreceptors, and adaptor molecules, SLRPs promote a switch between pro- and anti-inflammatory signaling, thereby determining disease resolution or chronification. Moreover, by orchestrating signaling through various receptors, SLRPs fine-tune inflammation and, despite their structural homology, regulate inflammatory processes in a molecule-specific manner. Hence, the overarching theme of this review is to highlight the molecular and functional specificity of biglycan-, decorin-, lumican-, and fibromodulin-mediated signaling in inflammatory and autoimmune diseases  相似文献   

3.
Small leucine rich repeat proteoglycans (SLRPs) are a group of active components of the extracellular matrix in all tissues. SLRPs bind to collagens and regulate collagen fibril growth and fibril organization. SLRPs also interact with various cytokines and extracellular compounds, which lead to various biological functions such cell adhesion and signaling, proliferation, and differentiation. Mutations in SLRP genes are associated with human diseases. Now crystal structures of five SLRPs are available. We describe some features of amino acid sequence and structures of SLRPs. We also review ligand interactions and then discuss the interaction surfaces. Furthermore, we map mutations associated with human diseases and discuss possible effects on structures by the mutations.  相似文献   

4.
Small leucine-rich proteoglycans/proteins (SLRPs) are associated with collagen fibril formation, and therefore important for the proper formation of extracellular matrices. SLRPs are differentially expressed in tissues and during pathological conditions, contributing to the development of connective tissue properties. The binding of SLRPs to collagens have recently been characterized, and may give some clues to the significance of these interactions. In this mini review, we summarize published work in this field, and propose several mechanisms for how SLRPs can control collagen matrix structure and function. SLRPs appear to influence collagen cross-linking patterns. We also propose that the SLRP-collagen interactions can assist in the process of juxtaposing the collagen monomers by steric hindrance or by directly connecting two collagen monomers during the fibril growth.  相似文献   

5.
Extracellular matrix remodeling is extensive in several heart diseases and hampers cardiac filling, often leading to heart failure. Proteoglycans have over the last two decades emerged as molecules with important roles in matrix remodeling and fibrosis in the heart. Here we discuss and review current literature on proteoglycans that have been studied in cardiac remodeling. The small leucine rich proteoglycans (SLRPs) are located within the extracellular matrix and are organizers of the matrix structure. Membrane-bound proteoglycans, such as syndecans and glypicans, act as receptors and direct cardiac fibroblast signaling. Recent studies indicate that proteoglycans are promising as diagnostic biomarkers for cardiac fibrosis, and that they may provide new therapeutic strategies for cardiac disease.  相似文献   

6.
The small leucine-rich proteoglycan (SLRP) family has significantly expanded in the past decade to now encompass five discrete classes, grouped by common structural and functional properties. Some of these gene products are not classical proteoglycans, whereas others have new and unique features. In addition to being structural proteins, SLRPs constitute a network of signal regulation: being mostly extracellular, they are upstream of multiple signaling cascades. They affect intracellular phosphorylation, a major conduit of information for cellular responses, and modulate distinct pathways, including those driven by bone morphogenetic protein/transforming growth factor beta superfamily members, receptor tyrosine kinases such as ErbB family members and the insulin-like growth factor I receptor, and Toll-like receptors. The wealth of mechanistic insights into the molecular and cellular functions of SLRPs has revealed both the sophistication of this family of regulatory proteins and the challenges that remain in uncovering the totality of their functions. This review is focused on novel biological functions of SLRPs with special emphasis on their protein cores, newly described genetic diseases, and signaling events in which SLRPs play key functions.  相似文献   

7.
8.
Proteoglycans of the extracellular matrix and growth control.   总被引:18,自引:0,他引:18  
Regulated cell growth results from the biological balance between soluble growth-regulating factors, their receptors and the elicited signal cascade on the one hand side and from extracellular macromolecular components and their interplay with membrane receptors on the other side. Proteoglycans have recently been recognized not only to play a part in providing shape and biomechanical strength of organs and tissues, but also to exhibit direct and indirect cell signalling properties. In this review, we discuss the direct growth-regulating role of proteoglycans with special emphasis on the lectican family and on the family of small proteoglycans with leucine-rich repeats (SLRPs). Indirect actions of proteoglycans by modulation of growth factor activities and growth factor distribution are exemplified by discussing the TGF-beta-binding properties of SLRPs and the interactions of core proteins of matrix proteoglycans with other growth factors. It is emphasized that the modulatory role of proteoglycans on cell proliferation cannot be separated from their participation in tissue organization in general, thereby explaining the diverse and sometimes contradictory reports on the effects of proteoglycans on cell proliferation and differentiation.  相似文献   

9.
Evidence for a functional role for extracellular matrix (ECM) proteins in adipose tissue is demonstrated in dynamic changes in expression of ECM genes during adipocyte differentiation and in obesity. Components of the ECM may regulate adipose cell number expansion by restricting pre-adipocyte proliferation, regulating apoptosis and inhibiting adipogenesis. Although pre-adipocytes express multiple proteoglycans, their role in pre-adipocyte proliferation up to now has remained unknown. The study described here was conducted to characterize roles of small leucine-rich proteoglycans (SLRPs) in adipocyte proliferation. Pre-adipocytes were seeded on plates coated with biglycan and decorin and were allowed to differentiate. In addition, pre-adipocytes were incubated on plates coated with biglycan, decorin, or fibronectin and measurements were made of cell proliferation and apoptosis. We are able to report that SLRPs decorin and biglycan did not affect differentiation of our 3T3-L1 cells; however, biglycan and decorin did reduce proliferation of pre-adipocytes, partly by induction of apoptosis. Furthermore, anti-proliferative capabilities of decorin and biglycan were nullified with removal of GAG side-chains suggesting that the chains played key roles in anti-proliferative effects of the SLRPs. We also found that co-treatment of decorin or biglycan with the proteoglycan fibronectin restored normal proliferation, an indication that multiple ECM proteins may act in concert to regulate overall proliferation rates of pre-adipocytes. These studies indicate that SLRPs may compose a regulatory factor in adipose tissue expansion, through hyperplasia.  相似文献   

10.
The small leucine-rich repeat proteoglycan (SLRPs) family of proteins currently consists of five classes, based on their structural composition and chromosomal location. As biologically active components of the extracellular matrix (ECM), SLRPs were known to bind to various collagens, having a role in regulating fibril assembly, organization and degradation. More recently, as a function of their diverse proteins cores and glycosaminoglycan side chains, SLRPs have been shown to be able to bind various cell surface receptors, growth factors, cytokines and other ECM components resulting in the ability to influence various cellular functions. Their involvement in several signaling pathways such as Wnt, transforming growth factor-β and epidermal growth factor receptor also highlights their role as matricellular proteins. SLRP family members are expressed during neural development and in adult neural tissues, including ocular tissues. This review focuses on describing SLRP family members involvement in neural development with a brief summary of their role in non-neural ocular tissues and in response to neural injury.  相似文献   

11.
Collagen has found use as a scaffold material for tissue engineering as well as a coating material for implants with a view to enhancing osseointegration through mimicry of the bone extracellular matrix in vivo. The aim of this study was to compare the collagen types I, II, and III with regard to their ability to bind the small leucine-rich proteoglycans (SLRPs) decorin and biglycan during fibrillogenesis in vitro in phosphate buffer. In addition, the influence of SLRPs on the proportion of collagen molecules incorporated into fibrils during fibrillogenesis in vitro at high and low ionic strength was investigated, as were their effects on the morphology of collagen fibrils and the speed of fibrillogenesis. Considerably more biglycan than decorin was bound by all three collagen types. Collagen II bound significantly more SLRPs in fibrils than collagen I and III. Decorin and biglycan decreased the proportion of collagen molecules of all three collagen types incorporated into fibrils in similar fashion. Biglycan affected neither fibril diameter nor the speed of fibrillogenesis. Decorin reduced the fibril diameter of all three collagen types. The differences in SLRP-binding ability between collagen types could be of significance when selecting collagen type and/or SLRPs as scaffold materials for tissue engineering or implant coatings.  相似文献   

12.
The class of small leucine-rich proteoglycans (SLRPs) is a family of homologous proteoglycans harboring relatively small (36–42 kDa) protein cores compared with the larger cartilage and mesenchymal proteoglycans. SLRPs have been localized to most skeletal regions, with specific roles designated during all phases of bone formation, including periods relating to cell proliferation, organic matrix deposition, remodeling, and mineral deposition. This is mediated by key signaling pathways regulating the osteogenic program, including the activities of TGF-β, bone morphogenetic protein, Wnt, and NF-κB, which influence both the number of available osteogenic precursors and their subsequent development, differentiation, and function. On the other hand, SLRP depletion is correlated with degenerative diseases such as osteoporosis and ectopic bone formation. This minireview will focus on the SLRP roles in bone physiology and pathology.  相似文献   

13.
Ameye L  Young MF 《Glycobiology》2002,12(9):107R-116R
Small leucine-rich proteoglycans (SLRPs) are extracellular molecules that bind to TGFbetas and collagens and other matrix molecules. In vitro, SLRPs were shown to regulate collagen fibrillogenesis, a process essential in development, tissue repair, and metastasis. To better understand their functions in vivo, mice deficient in one or two of the four most prominent and widely expressed SLRPs (biglycan, decorin, fibromodulin, and lumican) were recently generated. All four SLRP deficiencies result in the formation of abnormal collagen fibrils. Taken together, the collagen phenotypes demonstrate a cooperative, sequential, timely orchestrated action of the SLRPs that altogether shape the architecture and mechanical properties of the collagen matrix. In addition, SLRP-deficient mice develop a wide array of diseases (osteoporosis, osteoarthritis, muscular dystrophy, Ehlers-Danlos syndrome, and corneal diseases), most of them resulting primarily from an abnormal collagen fibrillogenesis. The development of these diseases by SLRP-deficient mice suggests that mutations in SLRPs may be part of undiagnosed predisposing genetic factors for these diseases. Although the distinct phenotypes developed by the different singly deficient mice point to distinct in vivo function for each SLRP, the analysis of the double-deficient mice also demonstrates the existence of rescuing/compensation mechanisms, indicating some functional overlap within the SLRP family.  相似文献   

14.
Skin aging is characterised by a progressive deterioration of its functional properties, linked to alterations of dermal connective tissue. Whereas many studies have been devoted to collagen alterations during aging, the situation is less clear concerning glycosaminoglycans and proteoglycans. Particularly, the alterations of the expression of small leucine-rich proteoglycans (SLRPs), a family of proteoglycans strongly implicated in cell regulation, have never been studied.In the present study we measured glycosaminoglycans and small leucine-rich proteoglycans synthesis by skin fibroblasts from donors of 1 month to 83 years old. [3H]-glucosamine and [35S]-sulfate incorporation did not show significant differences of sulfated GAG synthesis during aging. On the other hand, a significant positive correlation was found between hyaluronan secretion and donor’s age. Northern blot analysis of SLRPs mRNAs showed a significant negative correlation of lumican mRNA with donor’s age, whereas decorin and biglycan mRNAs were not significantly altered. Immunohistochemical study and quantitative image analysis confirmed a decreased lumican accumulation in aged human skin.Taken together, our results suggest that impairment of glycosaminoglycans and SLRPs synthesis might be involved in the functional alterations of aged skin.  相似文献   

15.
During acute brain injury and/or sterile inflammation, release of danger-associated molecular patterns (DAMPs) activates pattern recognition receptors (PRRs). Microglial toll-like receptor (TLR)-4 activated by DAMPs potentiates neuroinflammation through inflammasome-induced IL-1β and pathogenic Th17 polarization which critically influences brain injury. TLR4 activation accompanies increased CD40, a cognate costimulatory molecule, involved in microglia-mediated immune responses in the brain. During brain injury, excessive release of extracellular ATP (DAMPs) is involved in promoting the damage. However, the regulatory role of CD40 in microglia during ATP-TLR4-mediated inflammasome activation has never been explored. We report that CD40, in the absence of ATP, synergizes TLR4-induced proinflammatory cytokines but not IL-1β, suggesting that the response is independent of inflammasome. The presence of ATP during TLR4 activation leads to NLRP3 inflammasome activation and caspase-1-mediated IL-1β secretion which was inhibited during CD40 activation, accompanied with inhibition of ERK1/2 and reactive oxygen species (ROS), and elevation in p38 MAPK phosphorylation. Experiments using selective inhibitors prove indispensability of ERK 1/2 and ROS for inflammasome activation. The ATP-TLR4-primed macrophages polarize the immune response toward pathogenic Th17 cells, whereas CD40 activation mediates Th1 response. Exogenous supplementation of IFN-γ (a Th1 cytokine and CD40 inducer) results in decreased IL-1β, suggesting possible feedback loop mechanism of inflammasome inhibition, whereby IFN-γ-mediated increase in CD40 expression and activation suppress neurotoxic inflammasome activation required for Th17 response. Collectively, the findings indicate that CD40 is a novel negative regulator of ATP-TLR4-mediated inflammasome activation in microglia, thus providing a checkpoint to regulate excessive inflammasome activation and Th17 response during DAMP-mediated brain injury.  相似文献   

16.

Background

Small leucine-rich proteoglycans (SLRPs) are molecules that have signaling roles in a multitude of biological processes. In this respect, SLRPs play key roles in the evolution of a variety of diseases throughout the human body.

Scope of Review

We will critically review current developments in the roles of SLRPs in several types of disease of the kidney and lungs. Particular emphasis will be given to the roles of decorin and biglycan, the best characterized members of the SLRP gene family.

Major Conclusions

In both renal and pulmonary disorders, SLRPs are essential elements that regulate several pathophysiological processes including fibrosis, inflammation and tumor progression. Decorin has remarkable antifibrotic and antitumorigenic properties and is considered a valuable potential treatment of these diseases. Biglycan can modulate inflammatory processes in lung and renal inflammation and is a potential target in the treatment of inflammatory conditions.

General Significance

SLRPs can serve as either treatment targets or as potential treatment in renal or lung disease. This article is part of a Special Issue entitled Matrix-mediated cell behaviour and properties.  相似文献   

17.
Severe pulmonary infection or vigorous cyclic deformation of the alveolar epithelial type I (AT I) cells by mechanical ventilation leads to massive extracellular ATP release. High levels of extracellular ATP saturate the ATP hydrolysis enzymes CD39 and CD73 resulting in persistent high ATP levels despite the conversion to adenosine. Above a certain level, extracellular ATP molecules act as danger-associated molecular patterns (DAMPs) and activate the pro-inflammatory response of the innate immunity through purinergic receptors on the surface of the immune cells. This results in lung tissue inflammation, capillary leakage, interstitial and alveolar oedema and lung injury reducing the production of surfactant by the damaged AT II cells and deactivating the surfactant function by the concomitant extravasated serum proteins through capillary leakage followed by a substantial increase in alveolar surface tension and alveolar collapse. The resulting inhomogeneous ventilation of the lungs is an important mechanism in the development of ventilation-induced lung injury. The high levels of extracellular ATP and the upregulation of ecto-enzymes and soluble enzymes that hydrolyse ATP to adenosine (CD39 and CD73) increase the extracellular adenosine levels that inhibit the innate and adaptive immune responses rendering the host susceptible to infection by invading microorganisms. Moreover, high levels of extracellular adenosine increase the expression, the production and the activation of pro-fibrotic proteins (such as TGF-β, α-SMA, etc.) followed by the establishment of lung fibrosis.  相似文献   

18.
Apoptosis is an evolutionarily conserved mechanism that removes damaged or unwanted cells, effectively maintaining cellular homeostasis. It has long been suggested that a deficiency in this type of naturally occurring cell death could potentially lead to necrosis, resulting in the release of endogenous immunogenic molecules such as damage-associated molecular patterns (DAMPs) and a noninfectious inflammatory response. However, the details about how danger signals from apoptosis-deficient cells are detected and translated to an immune response are largely unknown. In this study, we found that Drosophila mutants deficient for Dronc, the key initiator caspase required for apoptosis, produced the active form of the endogenous Toll ligand Spätzle (Spz). We speculated that, as a system for sensing potential DAMPs in the hemolymph, the dronc mutants constitutively activate a proteolytic cascade that leads to Spz proteolytic processing. We demonstrated that Toll signaling activation required the action of Persephone, a CLIP domain serine protease that usually reacts to microbial proteolytic activities. Our findings show that the Persephone proteolytic cascade plays a crucial role in mediating DAMP-induced systemic responses in apoptosis-deficient Drosophila mutants.  相似文献   

19.
Pathogen-associated molecular patterns (PAMPs) trigger host immune response by activating pattern recognition receptors like toll-like receptors (TLRs). However, the mechanism whereby several pathogens, including viruses, activate TLRs via a non-PAMP mechanism is unclear. Endogenous “inflammatory mediators” called damage-associated molecular patterns (DAMPs) have been implicated in regulating immune response and inflammation. However, the role of DAMPs in inflammation/immunity during virus infection has not been studied. We have identified a DAMP molecule, S100A9 (also known as Calgranulin B or MRP-14), as an endogenous non-PAMP activator of TLR signaling during influenza A virus (IAV) infection. S100A9 was released from undamaged IAV-infected cells and extracellular S100A9 acted as a critical host-derived molecular pattern to regulate inflammatory response outcome and disease during infection by exaggerating pro-inflammatory response, cell-death and virus pathogenesis. Genetic studies showed that the DDX21-TRIF signaling pathway is required for S100A9 gene expression/production during infection. Furthermore, the inflammatory activity of extracellular S100A9 was mediated by activation of the TLR4-MyD88 pathway. Our studies have thus, underscored the role of a DAMP molecule (i.e. extracellular S100A9) in regulating virus-associated inflammation and uncovered a previously unknown function of the DDX21-TRIF-S100A9-TLR4-MyD88 signaling network in regulating inflammation during infection.  相似文献   

20.
Myocardial ischemia/reperfusion (I/R) is the most common cause of myocardial inflammation, which is primarily a manifestation of the innate immune responses. Innate immunity is activated when pattern recognition receptors (PRRs) respond to molecular patterns common to microbes and to danger signals expressed by injured or infected cells, so called pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs). The expression of various PRRs in cardiomyocytes and the release of DAMPs from cardiomyocytes subjected to I/R injury, through active mechanisms as well as passive processes, enable cardiomyocytes to generate innate immune responses. Studies in isolated heart and cardiomyocytes have confirmed the inflammatory and functional effects of cardiac PRRs especially Toll-like receptors in response to I/R-derived DAMPs, such as heat shock proteins. This review addresses the active role of cardiomyocytes in mediating innate inflammatory responses to myocardial I/R. We propose that cardiomyocytes act as innate immune cells in myocardial I/R injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号