首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Galectin-3 (gal-3) is a β-galactoside binding protein present in multivalent complexes with an extracellular matrix and with cell surface glycoconjugates. In this context, it can deliver a variety of intracellular signals to modulate cell activation, differentiation and survival. In the hematopoietic system, it was demonstrated that gal-3 is expressed in myeloid cells and surrounding stromal cells. Furthermore, exogenous and surface gal-3 drive the proliferation of myeloblasts in a granulocyte-macrophage colony-stimulating factor (GM-CSF)-dependent manner. Here, we investigated whether gal-3 regulates the formation of myeloid bone marrow compartments by studying galectin-3(-/-) mice (gal-3(-/-)) in the C57BL/6 background. The bone marrow histology of gal-3(-/-) mice was significantly modified and the myeloid compartments drastically disturbed, in comparison with wild-type (WT) animals. In the absence of gal-3, we found reduced cell density and diaphyseal disorders containing increased trabecular projections into the marrow cavity. Moreover, myeloid cells presented limited capacity to differentiate into mature myeloid cell populations in gal-3(-/-) mice and the number of hematopoietic multipotent progenitors was increased relative to WT animals. In addition, bone marrow stromal cells of these mice had reduced levels of GM-CSF gene expression. Taken together, our data suggest that gal-3 interferes with hematopoiesis, controlling both precursors and stromal cells and favors terminal differentiation of myeloid progenitors rather than proliferation.  相似文献   

4.
SET-CAN associated with the t(9;9) in acute undifferentiated leukemia encodes almost the entire sequence of SET and the C-terminal two-third portion of CAN, including the FG repeat region. To clarify a role(s) of SET-CAN in leukemogenesis, we developed transgenic mice expressing SET-CAN under the control of the Gata1 gene hematopoietic regulatory domain that is active in distinct sets of hematopoietic cells. SET-CAN transgenic mice showed anemia, thrombocytopenia, and splenomegaly. A significant number of transgenic mice started dying after 6 months post-birth, being in good agreement with the fact that red blood cells and platelets decreased. We found that a significant number of c-kit+ myeloid cells appeared in peripheral blood in transgenic mice. Characterization of the bone marrow cells of transgenic mice indicated impairment in hematopoietic differentiation of erythroid, megakaryocytic, and B cell lineages by SET-CAN. Transgenic mice, in particular, exhibited a high population of the c-kit+Sca-1+Lin- fraction in bone marrow cells compared with that of the control littermates. Our results demonstrate that SET-CAN blocks the hematopoietic differentiation program--one of the characteristics of acute myeloid leukemia.  相似文献   

5.
6.
ITAM-bearing transmembrane signaling adaptors such as DAP12 and FcRγ are important players in bone homeostasis, but their precise role and functions are still unknown. It has been shown that osteoclast differentiation results from the integration of the RANK and of the DAP12 and FcRγ signaling pathways. DAP12-deficient mice suffer from a mild osteopetrosis and culture of their bone marrow cells in the presence of M-CSF and RANKL, fails to give rise to multinucleated osteoclasts. Here, we report that mice overexpressing human DAP12 have an osteopenic bone phenotype due to an increased number of osteoclasts on the surface of trabecular and cortical bone. This enhanced number of osteoclasts is associated with an increased number of proliferating myeloid progenitors in Tg-hDAP12 mice. It is concomitant with an arrest of B cell development at the Pre-Pro B/Pre B stage in the bone marrow of Tg-hDAP12 mice and important decrease of follicular and marginal B cells in the spleen of these animals. Our data show that the overexpression of DAP12 results in both increased osteoclastogenesis and impaired hematopoiesis underlining the relationship between bone homeostasis and hematopoiesis.  相似文献   

7.
Autophagy is a conserved cellular pathway responsible for the sequestration of spent organelles and protein aggregates from the cytoplasm and their delivery into lysosomes for degradation. Autophagy plays an important role in adaptation to starvation, in cell survival, immunity, development and cancer. Recent evidence in mice suggests that autophagic defects in hematopoietic stem cells (HSCs) may be implicated in leukemia. Indeed, mice lacking Atg7 in HSCs develop an atypical myeloproliferation resembling human myelodysplastic syndrome (MDS) progressing to acute myeloid leukemia (AML). Our studies suggest that accumulation of damaged mitochondria and reactive oxygen species result in cell death of the majority of progenitor cells and, possibly, concomitant transformation of some surviving ones. Interestingly, bone marrow cells from MDS patients are characterized by mitochondrial abnormalities and increased cell death. A role for autophagy in the transformation to cancer has been proposed in other cancer types. This review focuses on autophagy in human MDS development and progression to AML within the context of the role of mitochondria, apoptosis and reactive oxygen species (ROS) in its pathogenesis.Key words: autophagy, mitophagy, Atg7, hematopoiesis, HSCs, myelodysplastic syndrome, acute myeloid leukemia  相似文献   

8.
The hematopoietic cell malignancy is one of the most prevalent type of cancer and the disease has multiple pathologic molecular signatures. Research on the origin of hematopoietic cancer stem cells and the mode of subsequent maintenance and differentiation needs robust animal models that can reproduce the transformation and differentiation event in vivo. Here, we show that co-transduction of MYC and PIM2 proto-oncogenes into mouse bone marrow cells readily establishes permanent cell lines that can induce lethal myeloid sarcoma in vivo. Unlike the previous doubly transgenic mouse model in which coexpression of MYC and PIM2 transgenes exclusively induced B cell lymphoma, we were able to show that the same combination of genes can also transform primary bone marrow myeloid cells in vitro resulting in permanent cell lines which induce myeloid sarcoma upon in vivo transplantation. By inducing cancerous transformation of fresh bone marrow cells in a controlled environment, the model we established will be useful for detailed study of the molecular events involved in initial transformation process of primary myeloid bone marrow cells and provides a model that can give insight to the molecular pathologic characteristics of human myeloid sarcoma, a rare presentation of solid tumors of undifferentiated myeloid blast cells associated with various types of myeloid leukemia.  相似文献   

9.
Multiple members of the A, B, and C clusters of Hox genes are expressed in hematopoietic cells. Several of these Hox genes have been found to display distinctive expression patterns, with genes located at the 3' side of the clusters being expressed at their highest levels in the most primitive subpopulation of human CD34+ bone marrow cells and genes located at the 5' end having a broader range of expression, with downregulation at later stages of hematopoietic differentiation. To explore if these patterns reflect different functional activities, we have retrovirally engineered the overexpression of a 5'-located gene, HOXA10, in murine bone marrow cells and demonstrate effects strikingly different from those induced by overexpression of a 3'-located gene, HOXB4. In contrast to HOXB4, which causes selective expansion of primitive hematopoietic cells without altering their differentiation, overexpression of HOXA10 profoundly perturbed myeloid and B-lymphoid differentiation. The bone marrow of mice reconstituted with HOXA10-transduced bone marrow cells contained in high frequency a unique progenitor cell with megakaryocytic colony-forming ability and was virtually devoid of unilineage macrophage and pre-B-lymphoid progenitor cells derived from the transduced cells. Moreover, and again in contrast to HOXB4, a significant proportion of HOXA10 mice developed a transplantable acute myeloid leukemia with a latency of 19 to 50 weeks. These results thus add to recognition of Hox genes as important regulators of hematopoiesis and provide important new evidence of Hox gene-specific functions that may correlate with their normal expression pattern.  相似文献   

10.
Acute myeloid leukemia (AML) is the most common malignant myeloid disorder of progenitor cells in myeloid hematopoiesis and exemplifies a genetically heterogeneous disease. The patients with AML also show a heterogeneous response to therapy. Although all-trans retinoic acid (ATRA) has been successfully introduced to treat acute promyelocytic leukemia (APL), it is rather ineffective in non-APL AML. In our present study, 1200 off-patent marketed drugs and natural compounds that have been approved by the Food and Drug Administration (FDA) were screened for anti-leukemia activity using the retrovirus transduction/transformation assay (RTTA). Furazolidone (FZD) was shown to inhibit bone marrow transformation mediated by several leukemia fusion proteins, including AML1-ETO. Furazolidone has been used in the treatment of certain bacterial and protozoan infections in human and animals for more than sixty years. We investigated the anti-leukemic activity of FZD in a series of AML cells. FZD displayed potent antiproliferative properties at submicromolar concentrations and induced apoptosis in AML cell lines. Importantly, FZD treatment of certain AML cells induced myeloid cell differentiation by morphology and flow cytometry for CD11b expression. Furthermore, FZD treatment resulted in increased stability of tumor suppressor p53 protein in AML cells. Our in vitro results suggest furazolidone as a novel therapeutic strategy in AML patients.  相似文献   

11.
12.
13.
14.
A human Philadelphia-chromosome positive chronic myeloid leukemia-blast crisis (CML-BC) cell line BV173 proliferated in the hematopoietic tissues, infiltrated various organs and caused the death of immunodeficient SCID mice. Leukemia spreading was assessed with diminished number of bone marrow cells and caused splenomegaly. The leukemic colonies grew from single cell suspension of bone marrow, spleen and peripheral blood. Bcr-abl m-RNA was detectable in bone marrow, spleen, peripheral blood, liver, lungs and brain. Dying mice demonstrated severely hypoplastic bone marrow, splenomegaly and massive metastases in the liver and kidneys. The survival time of animals was dependent on the number of inoculated leukemia cells.  相似文献   

15.
EDAG是在胚胎发育阶段造血干细胞特异性表达的基因.为了在早期造血组织细胞中实现相关基因的条件敲除,构建了含有早期造血组织特异性表达的EDAG启动子和Cre重组酶基因的转基因EDAG-Cre表达载体质粒.通过显微注射的方法将线性化的5.6kb的EDAG-Cre转基因片段导入小鼠受精卵细胞核,获得的新生小鼠经过PCR鉴定,常规方法培育传代.结果发现,共获得了6只阳性转基因首建鼠,其中4只已经建系并稳定传代.RT-PCR分析表明Cre重组酶基因在阳性转基因小鼠的骨髓、脾脏、胸腺、外周血以及胎肝等组织中均有表达,重组酶活性也在脾和骨髓中获得确认.EDAG-Cre重组酶转基因小鼠的建立,为研究早期造血组织以及造血干细胞特异性基因条件敲除小鼠模型的建立奠定了基础.  相似文献   

16.
Although the physiological consequences of Notch signaling in hematopoiesis have been extensively studied, the differential effects of individual notch cleavage products remain to be elucidated. Given that ADAM10 is a critical regulator of Notch and that its deletion is embryonically lethal, we generated mice that overexpress ADAM10 (ADAM10 transgenic [A10Tg]) at early stages of lympho- and myeloid development. Transgene expression resulted in abrogated B cell development, delayed T cell development in the thymus, and unexpected systemic expansion of CD11b(+)Gr-1(+) cells, also known as myeloid-derived suppressor cells. Mixed bone marrow reconstitution assays demonstrated that transgene expression altered hematopoiesis via a cell-intrinsic mechanism. Consistent with previously reported observations, we hypothesized that ADAM10 overexpression dysregulated Notch by uncoupling the highly regulated proteolysis of Notch receptors. This was confirmed using an in vitro model of hematopoiesis via culturing A10Tg hematopoietic Lineage(-)Sca-1(+)c-Kit(+) cells with OP-9 stromal cells in the presence or absence of Delta-like 1, a primary ligand for Notch. Blockade of the site 2 (S2) and site 3 (S3) cleavage of the Notch receptor demonstrated differential effects on hematopoiesis. OP9-DL1 cultures containing the ADAM10 inhibitor (S2 cleavage site) enhanced and rescued B cell development from wild-type and A10Tg Lineage(-)Sca-1(+)c-Kit(+) cells, respectively. In contrast, blockade of γ-secretase at the S3 cleavage site induced accumulation of the S2 product and consequently prevented B cell development and resulted in myeloid cell accumulation. Collectively, these findings indicate that the differential cleavage of Notch into S2 and S3 products regulated by ADAM10 is critical to hematopoietic cell-fate determination.  相似文献   

17.
Helios, a member of the Ikaros family of DNA-binding proteins, is expressed in multipotential lymphoid progenitors and throughout the T lineage. However, in most B lineage cells, Helios is not expressed, suggesting that its absence may be critical for B cell development and function. To test this possibility, transgenic mice were generated that express Helios under the control of an Ig mu enhancer. Commitment to the B cell lineage was unaltered in Helios transgenic mice, and numbers of surface IgM(+) B cells were normal in the bone marrow and spleen. However, both bone marrow and splenic B cells exhibited prolonged survival and enhanced proliferation. B cells in Helios transgenic mice were also hyperresponsive to Ag stimulation. These alterations were observed even though the concentration of ectopic Helios in B lineage cells, like that of endogenous Helios in thymocytes, was well below the concentration of Ikaros. Further evidence that ectopic Helios expression contributes to B cell abnormalities was provided by the observation that Helios transgenic mice developed metastatic lymphoma as they aged. Taken together, these results demonstrate that silencing of Helios is critical for normal B cell function.  相似文献   

18.
Myelodysplastic syndromes (MDS) are clonal stem cell disorders which frequently show a hypercellular dysplastic bone marrow (BM) associated with inefficient hematopoiesis and peripheral cytopenias due to increased apoptosis and maturation blockades. Currently, little is known about the role of cell proliferation in compensating for the BM failure syndrome and in determining patient outcome. Here, we analyzed the proliferation index (PI) of different compartments of BM hematopoietic cells in 106 MDS patients compared to both normal/reactive BM (n = 94) and acute myeloid leukemia (AML; n = 30 cases) using multiparameter flow cytometry. Our results show abnormally increased overall BM proliferation profiles in MDS which significantly differ between early/low-risk and advanced/high-risk cases. Early/low-risk patients showed increased proliferation of non-lymphoid CD34+ precursors, maturing neutrophils and nucleated red blood cells (NRBC), while the PI of these compartments of BM precursors progressively fell below normal values towards AML levels in advanced/high-risk MDS. Decreased proliferation of non-lymphoid CD34+ and NRBC precursors was significantly associated with adverse disease features, shorter overall survival (OS) and transformation to AML, both in the whole series and when low- and high-risk MDS patients were separately considered, the PI of NRBC emerging as the most powerful independent predictor for OS and progression to AML. In conclusion, assessment of the PI of NRBC, and potentially also of other compartments of BM precursors (e.g.: myeloid CD34+ HPC), could significantly contribute to a better management of MDS.  相似文献   

19.
Peripheral blood mononuclear cells from a patient with acute myeloid leukemia (AML) and spleen cells from a patient with chronic myeloid leukemia (CML) were fused with HAT-sensitive human B lymphoma cells (RH-L4) in attempts to generate human monoclonal antibodies (Mab) against antigens with high specificity for myeloid leukemia cells. Forty-seven of 246 hybridomas secreted Ig that bound to AML cell surface constituents, as determined by FACS analysis of viable cells that were FITC-stained with the human Mab as the first-step reagent and FITC-conjugated rabbit anti-human Ig as second-step. Two of the 47 human Mab (one from each patient and designated AML-19 and CML-20, respectively) bound to both autologous and allogeneic myeloid leukemia cells. No significant binding was observed to cell surface constituents on human bone marrow cells, granulocytes, lymphocytes, erythrocytes, thymocytes, monocytes, lymphoblastic leukemia cells, fibroblasts, malignant B and T lymphocytic cell lines, and murine bone marrow cells. Both human Mab were IgG and were cytotoxic to myeloid leukemia cells in the presence of complement. About 70% of peripheral blood cell samples from 46 AML patients contained AML-19- and CML-20-positive cells, but the reactivity pattern had no correlation to the morphologic FAB classification of the samples. The promyelocytic HL60 cell line and the K562 cell line reacted with the two antibodies. Dot blot analysis of binding of AML-19 and CML-20 to cellular extracts immobilized on nitrocellulose paper showed that both human Mab in this assay also reacted with normal bone marrow cells. This was supported by microscopic immunofluorescence because both human Mab stained intracytoplasmatic structures in normal bone marrow cells, but both intracytoplasmatic and cell surface components stained in myeloid leukemia cells. Moreover, immunoblotting demonstrated that both human Mab in leukemia cells reacted with two cellular proteins with Mr approximately 14,500 and 18,000, and in normal bone marrow cells with a molecule with Mr approximately 20,000. Immunoprecipitation of cell membrane molecules with both the AML-19 and CML-20 antibody precipitated from leukemic cells only the molecule with Mr approximately 18,000 and no components from normal bone marrow cells. It is concluded that myeloid leukemogenesis may result in generation of cell surface expression of either new or abnormally processed molecules that are immunogenic in the autochthonous host. These molecules may also be useful as markers in diagnosis of myeloid leukemia.  相似文献   

20.
The Mixed Lineage Leukemia (MLL) gene is essential for embryonic hematopoietic stem cell (HSC) development, but its role during adult hematopoiesis is unknown. Using an inducible knockout model, we demonstrate that Mll is essential for the maintenance of adult HSCs and progenitors, with fatal bone marrow failure occurring within 3 weeks of Mll deletion. Mll-deficient cells are selectively lost from mixed bone marrow chimeras, demonstrating their failure to self-renew even in an intact bone marrow environment. Surprisingly, HSCs lacking Mll exhibit ectopic cell-cycle entry, resulting in the depletion of quiescent HSCs. In contrast, Mll deletion in myelo-erythroid progenitors results in reduced proliferation and reduced response to cytokine-induced cell-cycle entry. Committed lymphoid and myeloid cells no longer require Mll, defining the early multipotent stages of hematopoiesis as Mll dependent. These studies demonstrate that Mll plays selective and independent roles within the hematopoietic system, maintaining quiescence in HSCs and promoting proliferation in progenitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号