首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Ribosomes are essential components of all cells. A large body of knowledge has been accumulated regarding ribosome synthesis and assembly; however, the pathways of normal ribosome turnover, especially rRNA decay, are not known. Some information on ribosome recycling derives from studies on starved yeast cells that use a specialized type of autophagy, called ribophagy, to differentially target ribosomes for degradation. We found that Arabidopsis RNS2, a conserved ribonuclease of the RNase T2 family, is necessary for normal decay of rRNA. Mutants lacking RNS2 activity have longer-lived rRNA, accumulate RNA in the vacuole and show constitutive macroautophagy. Thus, it is clear that normal rRNA decay is necessary to maintain cellular homeostasis. These phenotypes and the subcellular localization of RNS2 in the endoplasmic reticulum and the vacuole suggest that RNS2 participates in a ribophagy-like mechanism that targets ribosomes for recycling under normal growth conditions.  相似文献   

2.
The interaction between streptomycin and ribosomal RNA   总被引:6,自引:0,他引:6  
The present study shows that a mutation in the 530 loop of 16S rRNA impairs the binding of streptomycin to the bacterial ribosome, thereby restricting the misreading effect of the drug. Previous reports demonstrated that proteins S4, S5 and S12 as well as the 915 region of 16S rRNA are involved in the binding of streptomycin, and indicated that the drug not only interacts with the 30S subunit but also with the 50S subunit. The relationship between the target of streptomycin and its known interference with the proofreading control of translational accuracy is examined in light of these results.  相似文献   

3.
Macroautophagy/autophagy is a key catabolic process, essential for maintaining cellular homeostasis and survival through the removal and recycling of unwanted cellular material. Emerging evidence has revealed intricate connections between the RNA and autophagy research fields. While a majority of studies have focused on protein, lipid and carbohydrate catabolism via autophagy, accumulating data supports the view that several types of RNA and associated ribonucleoprotein complexes are specifically recruited to phagophores (precursors to autophagosomes) and subsequently degraded in the lysosome/vacuole. Moreover, recent studies have revealed a substantial number of novel autophagy regulators with RNA-related functions, indicating roles for RNA and associated proteins not only as cargo, but also as regulators of this process. In this review, we discuss widespread evidence of RNA catabolism via autophagy in yeast, plants and animals, reviewing the molecular mechanisms and biological importance in normal physiology, stress and disease. In addition, we explore emerging evidence of core autophagy regulation mediated by RNA-binding proteins and noncoding RNAs, and point to gaps in our current knowledge of the connection between RNA and autophagy. Finally, we discuss the pathological implications of RNA-protein aggregation, primarily in the context of neurodegenerative disease.  相似文献   

4.
In a drug reprofiling attempt, we explored novel neuroprotective properties of 4-azasteroids by synthesizing chemical affinity tags capturing adenine nucleotide translocator-1, as a potential target. Dutasteride inhibits the mitochondrial transition pore and induces an increase of autophagosomal structures in human cell lines. In vivo, a surprising reduction of the beta-amyloid plaque load in a model for cerebral amyloidosis appears to connect release of neurotoxic peptides, mitochondrial apoptosis and autophagy.  相似文献   

5.
6.
7.
Summary Oligonucleotide fingerprinting shows the precursor form of the 23S ribosomal RNA fromBacillus megaterium to be larger than its mature counterpart, by some 8 percent, or approximately 250 nucleotides. It can further be shown that the 23SrRNA precursor doesnot contain the 5SrRNA sequence, as had been previously suggested.  相似文献   

8.
Autophagy is a conserved cellular process that acts as a key regulator in maintaining cellular homeostasis. Recent studies implicate an important role for autophagy in infection and immunity by removing invading pathogens and through modulating innate and adaptive immune responses. However, several pathogens, notably some positive-stranded RNA viruses, have subverted autophagy to their own ends. In this review, we summarize the current understanding of how viruses with a positive-stranded RNA genome interact with the host autophagy machinery to control their replication and spread. We review the mechanisms underlying the induction of autophagy and discuss the pro- and anti-viral functions of autophagy and the potential mechanisms involved.  相似文献   

9.
The multisubunit RNA exosome complex is a major ribonuclease of eukaryotic cells that participates in the processing, quality control and degradation of virtually all classes of RNA in Eukaryota. All this is achieved by about a dozen proteins with only three ribonuclease activities between them. At first glance, the versatility of the pathways involving the exosome and the sheer multitude of its substrates are astounding. However, after fifteen years of research we have some understanding of how exosome activity is controlled and applied inside the cell. The catalytic properties of the eukaryotic exosome are fairly well described and attention is now drawn to how the interplay between these activities impacts cell physiology. Also, it has become evident that exosome function relies on many auxiliary factors, which are intensely studied themselves. In this way, the focus of exosome research is slowly leaving the test tube and moving back into the cell.The exosome also has an interesting evolutionary history, which is evident within the eukaryotic lineage but only fully appreciated when considering similar protein complexes found in Bacteria and Archaea. Thus, while we keep this review focused on the most comprehensively described yeast and human exosomes, we shall point out similarities or dissimilarities to prokaryotic complexes and proteins where appropriate.The article is divided into three parts. In Part One we describe how the exosome is built and how it manifests in cells of different organisms. In Part Two we detail the enzymatic properties of the exosome, especially recent data obtained for holocomplexes. Finally, Part Three presents an overview of the RNA metabolism pathways that involve the exosome. This article is part of a Special Issue entitled: RNA Decay mechanisms.  相似文献   

10.
11.
12.
Autophagy and senescence have been described as central features of cell biology, but the interplay between these mechanisms remains obscure. Using a therapeutically relevant model of DNA damage-induced senescence in human glioma cells, we demonstrated that acute treatment with temozolomide induces DNA damage, a transitory activation of PRKAA/AMPK-ULK1 and MAPK14/p38 and the sustained inhibition of AKT-MTOR. This produced a transient induction of autophagy, which was followed by senescence. However, at the single cell level, this coordinated transition was not observed, and autophagy and senescence were triggered in a very heterogeneous manner. Indeed, at a population level, autophagy was highly negatively correlated with senescence markers, while in single cells this correlation did not exist. The inhibition of autophagy triggered apoptosis and decreased senescence, while its activation increased temozolomide-induced senescence, showing that DNA damage-induced autophagy acts by suppressing apoptosis.  相似文献   

13.
Complementarity between ferritin H mRNA and 28 S ribosomal RNA   总被引:4,自引:0,他引:4  
We have found an interesting complementarity in sequences of human ferritin H mRNA and 28 S ribosomal RNA. Immediately upstream of the initiating AUG in the ferritin mRNA is a stretch of 67 nucleotides which contains sequences complementary to several regions in 28 S RNA. One such region can form 55 base pairings with the 5' noncoding region of the ferritin H mRNA. Most of the complementarity is due to repeats of CCG in the ferritin mRNA and GGC in the ribosomal RNA. The regions of complementarity in the 28 S RNA appear to be expansion sequences that have arisen in the evolution of eukaryotic ribosomal RNA. We suggest that interaction of ferritin mRNA and 28 S RNA may function to regulate the stability and/or translatability of ferritin mRNA.  相似文献   

14.
15.
16.
17.
18.
The amount of Ca(2+) taken up in the mitochondrial matrix is a crucial determinant of cell fate; it plays a decisive role in the choice of the cell between life and death. The Ca(2+) ions mainly originate from the inositol 1,4,5-trisphosphate (IP(3))-sensitive Ca(2+) stores of the endoplasmic reticulum (ER). The uptake of these Ca(2+) ions in the mitochondria depends on the functional properties and the subcellular localization of the IP(3) receptor (IP(3)R) in discrete domains near the mitochondria. To allow for an efficient transfer of the Ca(2+) ions from the ER to the mitochondria, structural interactions between IP(3)Rs and mitochondria are needed. This review will focus on the key proteins involved in these interactions, how they are regulated, and what are their physiological roles in apoptosis, necrosis and autophagy. This article is part of a Special Issue entitled: 11th European Symposium on Calcium.  相似文献   

19.
20.
J Hamming  M Gruber    G AB 《Nucleic acids research》1979,7(4):1019-1033
The interaction between RNA polymerase and the E. coli ribosomal (r) RNA promoter(s) of the rrnE operon has been studied by the filter-binding method. The extent of complex formation between RNA polymerase and rrnE promoter(s) is salt-dependent; ppGpp specifically inhibits interaction of RNA polymerase with the rrnE promoter(s). A tentative model is proposed for the molecular events in the early steps of rRNA initiation: a transition of the primarily formed, labile RNA polymerase-rRNA promoter complex to a more stable form is the determining step. This step is salt-sensitive; ppGpp acts on this "isomerization".  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号