首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cells within human skin are exposed to mechanical stretching that is considered a trigger stimulus for keratinocyte proliferation, while its effect on keratinocyte migration has been poorly investigate. In order to explore the effect of stretching on keratinocyte migration spontaneously immortalized human keratinocyte (HaCaT) monolayers seeded onto collagen I-coated silicon sheets were stimulated three times for 1 hour every 24 hours (total time = 72 hours) by mechanical stretching increasing substrate deformations (10%) applied both as static (0 Hz) and cyclic (0.17 Hz) uniaxial stretching. At the end of stimulations monolayer areas measured in both static and cyclic samples appeared reduced and strongly oriented in a direction perpendicular to the stress direction compared to unstimulated ones. Moreover during the mechanical stimulation period HaCaT monolayers strongly increased the release in the medium of matrix metalloproteinase 9 (MMP-9), a proteolytic enzyme necessary for keratinocyte migration.Key words: keratinocyte, mechanical stretching, migration, MMP-9, MMP-2  相似文献   

2.
The airway epithelium may be damaged by inhalation of noxious agents, in response to pathogens, or during endotracheal intubation and mechanical ventilation. Maintenance of an intact epithelium is important for lung fluid balance, and the loss of epithelium may stimulate inflammatory responses. Epithelial repair in the airways following injury must occur on a substrate that undergoes cyclic elongation and compression during respiration. We have previously shown that cyclic mechanical strain inhibits wound closure in the airway epithelium (Savla and Waters, 1998b). In this study, we investigated the stimulation of epithelial wound closure by keratinocyte growth factor (KGF) in vitro and the mechanisms by which KGF overcomes the inhibition due to mechanical strain. Primary cultures of normal human bronchial epithelial cells (NHBE) and a cell line of human airway epithelial cells, Calu 3, were grown on Silastic membranes, and a wound was scraped across the well. The wells were then exposed to cyclic strain using the Flexercell Strain Unit, and wound closure was measured. While cyclic elongation (20% maximum) and cyclic compression (approximately 2%) both inhibited wound closure in untreated wells, treatment with KGF (50 ng/ml) significantly accelerated wound closure and overcame the inhibition due to cyclic strain. Since wound closure involves cell spreading, migration, and proliferation, we investigated the effect of cyclic strain on cell area, cell-cell distance, and cell velocity at the wound edge. While the cell area increased in unstretched monolayers, the cell area of monolayers in compressed regions decreased significantly. Treatment with KGF increased the cell area in both cyclically elongated and compressed cells. Also, when cells were treated with KGF, cell velocity was significantly increased in both static and cyclically strained monolayers, and cyclic strain did not inhibit cell migration. These results suggest that KGF is an important factor in epithelial repair that is capable of overcoming the inhibition of repair due to physiological levels of cyclic strain.  相似文献   

3.
Migration, proliferation and differentiation of keratinocytes are important processes during tissue regeneration and wound healing of the skin. Here, we focussed on proteases that contribute to extracellular matrix (ECM) remodeling as a prerequisite of keratinocyte migration. In particular, we assessed the significance of the mammalian cysteine peptidase cathepsin B for human keratinocytes during regeneration from scratch wounding. We describe the construction of a scratch apparatus that allows applying scratches of defined length, width and depth to cultured cells in a reproducible fashion. The rationale for our approach derived from our previous work where we have shown that HaCaT keratinocytes secrete cathepsin B into the extracellular space during spontaneous and induced migration. Here, we observed rapid removal of type IV collagen from underneath lamellipodial extensions of keratinocytes at the advancing fronts of regenerating monolayers, indicating that proteolytic ECM remodeling starts upon initiation of keratinocyte migration. Furthermore, we verified our previous results with HaCaT cells by using normal human epidermal keratinocytes (NHEK) and show that non-cell-permeant cathepsin B-specific inhibitors delayed full regeneration of the monolayers from scratch wounding in both cell systems, HaCaT and NHEK. Application of a single dose of cathepsin B inhibitor directly after scratch wounding of keratinocytes demonstrated that cathepsin B is essential during initial stages of wound healing, while its contribution to the subsequent processes of proliferation and differentiation of keratinocytes was of less significance. This notion was supported by our observation that the cathepsin B inhibitors used in this study did not affect proliferation rates of keratinocytes of regenerating cultures. Thus, we conclude that cathepsin B is indeed involved in ECM remodeling after its secretion from migrating keratinocytes. Cathepsin B might directly cleave ECM constituents or it may initiate proteolytic cascades that involve other proteases with the ability to degrade ECM components. Because cathepsin B is important for enabling migration of both, HaCaT cells and NHEK, our results support the notion that HaCaT keratinocytes represent an excellent cell culture model for analysis of human epidermal skin keratinocyte migration.  相似文献   

4.
The importance of expression of matrix metalloproteinase (MMP) in keratinocyte migration is well established, but its role remains unclear. Here we investigated the function of MMP-14 in TGF-beta1-induced keratinocyte migration. TGF-beta1 stimulated cell migration and the expression of MMP-2, -9 in HaCaT human keratinocyte cells. When we lowered MMP-14 mRNA with siRNA, cell migration, and MMP-9 expression decreased. Furthermore, the MMP-14 siRNA also reduced activation of JNK in response to TGF-beta1, and a JNK-specific inhibitor decreased both cell migration and MMP-9 expression. Taken together, these results suggest that TGF-beta1-induced HaCaT cell migration is mediated by MMP-14, which regulates MMP-9 expression via JNK signaling.  相似文献   

5.
目的:研究机械拉伸刺激对大鼠骨髓间充质干细胞迁移行为的影响并探讨其相关分子机制。方法:应用单轴机械拉伸加载装置考察不同条件的周期拉伸刺激对大鼠骨髓间充质干细胞迁移行为的影响,采用Transwell和划痕法评价细胞迁移能力,采用明胶酶谱法检测基质金属蛋白酶-2,-9(MMP-2,-9)表达的变化。结果:适宜的拉伸刺激可以明显促进大鼠骨髓间充质干细胞的迁移能力,1 Hz、10%应变拉伸8 h后可以使细胞迁移数量增加到对照组的1.58倍。拉伸刺激诱导骨髓间充质干细胞基质金属蛋白酶-2,-9(MMP-2,-9)表达。抑制剂GM6001抑制了拉伸诱导的MMP-2,-9分泌增加,同时抑制了拉伸刺激对细胞迁移的促进作用。结论:机械拉伸刺激影响大鼠骨髓间充质干细胞的迁移行为,MMP-2,-9在此过程中可能起着重要介导作用。  相似文献   

6.
Cathepsin B, a lysosomal cysteine proteinase, was detected within vesicles of cellular protrusions forming cell-cell contact sites between keratinocytes of the stratum spinosum of human skin. This observation suggested the possibility that secretion of the protease into the pericellular spaces could be involved in the dissociation of cell-cell contacts to enable intraepidermal keratinocyte migration. To determine whether cathepsin B is indeed secreted from migrating keratinocytes, we first used subconfluent HaCaT cells as a culture model to study spontaneous keratinocyte migration. A cathepsin B-specific fluorescent affinity label proved the association of mature cathepsin B with the surfaces of HaCaT cells at the leading edges of growing cells. Second, we used scratch-wounds of confluent HaCaT monolayers as a model of induced keratinocyte migration. Cathepsin B was detected within lysosomes, i.e. vesicles within the perinuclear region of non-wounded cells. Expression of cathepsin B was up-regulated and cathepsin B-positive vesicles showed a redistribution from perinuclear to peripheral regions of keratinocytes at the wound margins within 4 h after wounding. Enzyme cytochemistry further showed that cell surface-associated cathepsin B was proteolytically active at the leading fronts of migrating keratinocytes. In addition, increased amounts of mature forms of cathepsin B were detected within the conditioned media of HaCaT cells during the first 4 h after scratch-wounding. In contrast, and as a control, the activity of the cytosolic enzyme lactate dehydrogenase was not significantly higher in media of wounded cells as compared with non-wounded controls, arguing for a specific induction of cathepsin B secretion upon wounding and migration of the cells. This was further substantiated by applying various cathepsin B-specific inhibitors after wounding. These experiments showed that the migration ability of keratinocytes was reduced due to the blockage of functional cathepsin B. Thus, our results strongly suggest that cell surface-associated cathepsin B is a protease that contributes to the remodelling of the extracellular matrix and thereby promotes keratinocyte migration during wound healing.  相似文献   

7.
8.
Living cells are constantly subjected to various mechanical stimulations, such as shear flow, osmotic pressure, and hardness of substratum. They must sense the mechanical aspects of their environment and respond appropriately for proper cell function. Cells adhering to substrata must receive and respond to mechanical stimuli from the substrata to decide their shape and/or migrating direction. In response to cyclic stretching of the elastic substratum, intracellular stress fibers in fibroblasts and endothelial, osteosarcoma, and smooth muscle cells are rearranged perpendicular to the stretching direction, and the shape of those cells becomes extended in this new direction. In the case of migrating Dictyostelium cells, cyclic stretching regulates the direction of migration, and not the shape, of the cell. The cells migrate in a direction perpendicular to that of the stretching. However, the molecular mechanisms that induce the directional migration remain unknown. Here, using a microstretching device, we recorded green fluorescent protein (GFP)-myosin-II dynamics in Dictyostelium cells on an elastic substratum under cyclic stretching. Repeated stretching induced myosin II localization equally on both stretching sides in the cells. Although myosin-II-null cells migrated randomly, myosin-II-null cells expressing a variant of myosin II that cannot hydrolyze ATP migrated perpendicular to the stretching. These results indicate that Dictyostelium cells accumulate myosin II at the portion of the cell where a large strain is received and migrate in a direction other than that of the portion where myosin II accumulated. This polarity generation for migration does not require the contraction of actomyosin.  相似文献   

9.
In normal human epidermal keratinocytes (NHEK) proteolytic detachment from the substrate induces a complex activation cascade including expression of new proteins, morphological alterations, and the onset of migration for epidermal regeneration. By subtractive cloning we have shown that L6, a four-transmembrane protein, is newly expressed after proteolytic keratinocyte detachment. In this study, we have generated a novel anti-L6 antibody (clone HD-pKe#104-1.1) and investigated L6 expression regulation in vitro and in vivo as well as L6 function in keratinocyte migration. Dispase-mediated detachment induced L6 expression in NHEK at the mRNA and protein level. Immunohistology of skin biopsies displayed a strong expression of L6 in follicular epidermis and epidermolytic lesions of autoimmune bullous dermatoses (bullous pemphigoid, pemphigus vulgaris), but not in normal interfollicular epidermis. In contrast to normal keratinocytes, HaCaT cells showed constitutive L6 expression, indicating a constitutively active phenotype. After artificial wounding of confluent HaCaT cultures, anti-L6 antibody strongly impaired cell migration velocity and migratory reepithelization of the defect, indicating L6 involvement in keratinocyte migration. These findings suggest that L6 is an important activation-dependent regulator of keratinocyte function and epidermal tissue regeneration.  相似文献   

10.
X Zhu  Z Li  W Pan  L Qin  G Zhu  Y Ke  J Wu  P Bo  S Meng 《Molecular and cellular biochemistry》2012,369(1-2):255-266
Interleukin-22 (IL-22) is one of the key mediators of keratinocyte alterations in psoriasis. IL-22 inhibits keratinocyte differentiation and induces the migration of human keratinocytes. Grb2-associated binder 1 (Gab1) has been shown to mediate epidermal growth factor-induced epidermal growth and differentiation via interaction with the Src homology-2-containing protein-tyrosine phosphatase (Shp2). In this investigation, we explore the role of Gab1 and Gab2 in IL-22-mediated keratinocyte activities. We show that both Gab1 and Gab2 were tyrosine phosphorylated in IL-22-stimulated HaCaT cells and human primary epidermal keratinocytes and contributed to the activation of Extracellular signal regulated kinase 1/2 (Erk1/2) through interaction with Shp2. We further demonstrate that HaCaT cells infected with adenoviruses expressing Shp2-binding-defective Gab1/2 mutants exhibited decreased cell proliferation and migration, as well as increased differentiation. Moreover, similar results were observed in HaCaT cells infected with adenovirus-based small interfering RNAs targeting Gab1 and/or Gab2. Altogether, these data underscore the critical roles of Gab1 and Gab2 in IL-22-mediated HaCaT cell proliferation, migration, and differentiation.  相似文献   

11.
Mechanical forces play an important role in the organization, growth and function of tissues. Dynamic extracellular environment affects cellular behavior modifying their orientation and their cytoskeleton. In this work, human fibroblasts have been subjected for three hours to increasing substrate deformations (1–25%) applied as cyclic uniaxial stretching at different frequencies (from 0.25 Hz to 3 Hz). Our objective was to identify whether and in which ranges the different deformations magnitude and rate were the factors responsible of the cell alignment and if actin cytoskeleton modification was involved in these responses. After three hours of cyclically stretched substrate, results evidenced that fibroblasts aligned perpendicularly to the stretch direction at 1% substrate deformation and reached statistically higher orientation at 2% substrate deformation with unmodified values at 5–20%, while 25% substrate deformation induced cellular death. It was also shown that a percentage of cells oriented perpendicularly to the deformation were not influenced by increased frequency of cyclical three hours deformations (0.25–3 Hz). Cyclic substrate deformation was shown also to involve actin fibers which orient perpendicularly to the stress direction as well. Thus, we argue that a substrate deformation induces a dynamic change in cytoskeleton able to modify the entire morphology of the cells.Key Words: mechanical stretching, cell orientation, stress fibers  相似文献   

12.
Pulsatile fluid shear stress and circumferential stretch are responsible for the axial alignment of vascular endothelial cells and their actin stress fibers in vivo. We studied the effect of cyclic alterations in axial stretch independent of flow on endothelial cytoskeletal organization in intact arteries and determined if functional alterations accompanied morphologic alterations. Rat renal arteries were axially stretched (20%, 0.5 Hz) around their in vivo lengths, for up to 4h. Actin stress fibers were examined by immunofluorescent staining. We found that cyclic axial stretching of intact vessels under normal transmural pressure in the absence of shear stress induces within a few hours realignment of endothelial actin stress fibers toward the circumferential direction. Concomitant with this morphologic alteration, the sensitivity (log(EC(50))) to the endothelium-dependent vasodilator (acetylcholine) was significantly decreased in the stretched vessels (after stretching -5.15+/-0.79 and before stretching -6.71+/-0.78, resp.), while there was no difference in sodium nitroprusside (SNP) sensitivity. There was no difference in sensitivity to both acetylcholine and SNP in time control vessels. Similar to cultured cells, endothelial cells in intact vessels subjected to cyclic stretching reorganize their actin filaments almost perpendicular to the stretching direction. Accompanying this morphological alteration is a loss of endothelium-dependent vasodilation but not of smooth muscle responsiveness.  相似文献   

13.
We investigated the combined effect of micro-texture and mechanical strain on neuronal cell development such as neurite length and neurite density in a rat pheochromocytoma cell line (PC12 cells). Cells were seeded on flexible silicone substrates with micro-texture or no texture (smooth) and cultured under static and dynamic conditions. In the static condition substrates were not stretched and in the dynamic conditions substrates were subjected to cyclic uniaxial stretching at three different strain levels of 4%, 8%, and 16% with each at three different strain rates at 0.1, 0.5, and 1.0 Hz. Results showed that of all cell cultures there was no significant difference in neurite development between cells on smooth and textured substrates, except in the static and 4% at 0.1 Hz conditions, where micro-texture induced significantly longer neurites. With both types of substrates, a lower mechanical condition (4% at 1.0 Hz or 16% at 0.1 Hz) resulted in more and longer neurites and lower cell density, and a higher mechanical condition (16% at 1.0 Hz) resulted in fewer and shorter neurites and lower cell density as compared to the static condition. These findings suggest that the effect of the micro-texture on neurite development is more prominent in low mechanical conditions than in high mechanical conditions and that the strain level and strain rate have an interrelated effect on neurite development: a higher strain level at a lower strain rate has a similar effect as a lower strain level at a higher strain rate in terms of promoting neurite development.  相似文献   

14.
We studied actin cytoskeletal remodeling and the role of leukotrienes and tyrosine phosphorylation in the response of endothelial cells to different types of cyclic mechanical stretching. Human aortic endothelial cells were grown on deformable silicone membranes subjected to either cyclic one-directional (strip) stretching (10%, 0.5 Hz), or biaxial stretching. After 1 min of either type of stretching, actin cytoskeletons of the stretched cells were already disrupted. After stretching for 10 and 30 min, the percentage of the stretched cells that had disrupted actin cytoskeletons were significantly increased, compared with control cells without stretching. Also, at these two time points, biaxial stretching consistently produced higher frequencies of actin cytoskeleton disruption. At 3 h, strip stretching caused the formation of stress fiber bundles, which were oriented nearly perpendicular to the stretching direction. With biaxial stretching, however, actin cytoskeletons in many stretched cells were remodeled into three-dimensional actin structures protruding outside the substrate plane, within which cyclic stretching was applied. In both stretching conditions, actin filaments were formed in the direction without substrate deformation. Moreover, substantially inhibiting either leukotriene production with nordihydroguaiaretic acid or tyrosine phosphorylation with tyrphostin A25 did not block the actin cytoskeletal remodeling. However, inhibiting both leukotriene production and tyrosine phosphorylation completely blocked the actin cytoskeletal remodeling. Thus, the study showed that the remodeling of actin cytoskeletons of the stretched endothelial cells include rapid disruption first and then re-formation. The resulting pattern of the actin cytoskeleton after remodeling depends on the type of cyclic stretching applied, but under either type of cyclic stretching, the actin filaments are formed in the direction without substrate deformation. Finally, leukotrienes and tyrosine phosphorylation are necessary for actin cytoskeletal remodeling of the endothelial cells in response to mechanical stretching.  相似文献   

15.
Our previous research found that tetraspanin CD9 is downregulated in migrating epidermis during wound healing, and CD9 downregulation contributes to keratinocyte migration via matrix metalloproteinase-9 (MMP-9) activation. However, little is known about the mechanisms involved in CD9-regulated keratinocyte migration and MMP-9 activation. In this study, we revealed that the expressions of integrin subunits β5 and β6 were regulated by CD9. Furthermore, CD9 silencing triggered the switch from αvβ5 to αvβ6 integrin in HaCaT keratinocytes and CD9 overexpression reversed the switch. Importantly, integrin αvβ6 functional blocking antibody 10D5 significantly inhibited CD9 silencing-induced keratinocyte migration and MMP-9 activation, suggesting that the switch from αvβ5 to αvβ6 integrin plays a key role in CD9-regulated cell migration and MMP-9 activation in keratinocytes.  相似文献   

16.
Fibroblasts in intact tendons align with stretching direction, but they tend to orient randomly in healing tendons. Therefore, a question arises: Do fibroblast responses to mechanical stretching depend on their orientation? To address this question, human patellar tendon fibroblasts were grown in custom-made silicone dishes that possess microgrooved culture surfaces. The direction of the microgrooves was either parallel or normal to the direction of cyclic uniaxial stretching. Fibroblasts grown in these microgrooves had a polar morphology and oriented along the direction of the microgrooves regardless of the stretching conditions. Tendon fibroblasts expressed higher levels of alpha-smooth muscle actin when they were oriented parallel to the stretching direction than when they were oriented normal to the stretching direction. Also, cyclic stretching of the fibroblasts perpendicular to their orientation induced a higher activity level of secretory phospholipase A(2) compared with stretching of the cells parallel to their orientation. Thus, these results show that fibroblast responses to mechanical stretching depend on cell orientation to the stretching direction.  相似文献   

17.
The environment for living organism in space has microgravity and/or hypergravity and/or any kind of mechanical stresses. Cellular response may differ from the variety of mechanical stress. Mitogen-activated protein kinases (MAPKs) pathway is related to various cellular events. In the present study it was investigated the serial measurement of MAPK phosphorylation using western-blotting analysis following with three types of cyclic stretch, static, 0.1 Hz and 0.25 Hz. The result was that induction of MAPK phosphorylation had peaks within 2 to 4 hours and attenuated, while induction of p38 phosphorylation in 0.1 Hz stretch had a peak at 6 hours later and the strongest. Thus, there might be differential cellular response depends upon the frequency of cyclic stretch .  相似文献   

18.
The normal vasculature is maintained by a balance between angiogenic factors and anti-angiogenic factors. Recent studies have shown that pigment epithelium-derived factor (PEDF) can induce differentiation and inhibit angiogenesis of tumors. This study was designed to investigate the expression of PEDF and its roles in proliferation, adhesion and migration of HaCaT cells, a human keratinocyte cell line. Our results have shown that PEDF is expressed in HaCaT cells at both mRNA and protein levels determined by RT-PCR and Western blot, separately. PEDF signal mainly localizes in the cytoplasm of HaCaT cell, as determined by immunofluorescence. Furthermore, expression of PEDF is decreased by 50 ng/ml of VEGF165. Proliferation and migration of HaCaT cells are decreased by PEDF, while adhesion of HaCaT cells is upregulated approximately by 29%. PEDF also induce the S phase accumulation of HaCaT cells. In addition, phosphorylation of ERK1/2, not JNK and p38, is decreased by PEDF. These results indicate that PEDF may play an inhibitory role on growth and migration of HaCaT cells through dephosphorylation of ERK1/2.  相似文献   

19.
It is assumed that plasmin participates in pericellular proteolysis in the epidermis. Plasmin is generated by keratinocyte-associated plasminogen activators from the proenzyme plasminogen; plasminogen activation can proceed at the keratinocyte surface. The resultant plasmin interferes with cell to matrix adhesion and does possibly contribute to keratinocyte migration during reepithelialization. Here we describe the receptor for urokinase-type plasminogen activator (uPA-R) in the human keratinocyte cell line HaCaT, which serves to direct plasminogen activation to the cell surface; we relate the receptor to the uPA-R previously described in human myclo-/monocytes. Binding of uPA to the receptor accelerated plasminogen activation by a factor of ≈10, compared to uPA in solution. Receptor-bound uPA was susceptible to inhibition by the plasminogen activator inhibitors 1 and 2. uPA and uPA-R antigen, as well as uPA activity, were localized to the leading front of expanding sheets of HaCaT cells. Exposure of HaCaT cells to plasminogen was followed by detachment of the cells. Detachment was prevented by an anti-catalytic anti-uPA antibody, by the plasmin-specific inhibitor aprotinin, and by the lysine analogue tranexamic acid, the latter of which prevents plasmin(ogen) binding to the cell surface. Our findings support the hypothesis that uPA-mediated plasminogen activation is characteristic of mobile rather than sessile keratinocytes. Moreover, the uPA-R seems to focalize plasminogen activation to the surface of cells at the site of keratinocyte migration.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号