首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Strong evidences support the inhibitory activity of cellular FLICE-inhibitory protein (FLIP) in the apoptotic signalling by death receptors in tumor cells. However, little is known about the role of FLIP in the regulation of apoptosis in non-transformed cells. In this report, we demonstrate that FLIPL plays an important role as a survival protein in non-transformed breast epithelial cells. Silencing of FLIPL by siRNA methodology enhances TRAIL-R2 expression and activates a caspase-dependent cell death process in breast epithelial cells. This cell death requires the expression of TRAIL, TRAIL-R2, FADD and procaspase-8 proteins. A mitochondria-operated apoptotic pathway is partially required for FLIPL siRNA-induced apoptosis. Interestingly, FLIPL silencing markedly abrogates formation of acinus-like structures in a three-dimensional basement membrane culture model (3D) of the human mammary MCF-10A cell line through a caspase-8 dependent process. Furthermore, over-expression of FLIPL in MCF-10A cells delayed lumen formation in 3D cultures. Our results highlight the central role of FLIP in maintaining breast epithelial cell viability and suggest that the mechanisms regulating FLIP levels should be finely controlled to prevent unwanted cell demise.  相似文献   

2.
3.
Kim DK  Cho ES  Yoo JH  Um HD 《Molecules and cells》2000,10(5):552-556
Despite the expression of Fas, some clones of myeloma cells are resistant to Fas-mediated apoptosis. To define a cellular factor involved in the resistance, we performed a comparative study using two clones of myeloma cells, RPMI8226 and U266. These cells were reported to express cell surface Fas at similar levels, but only RPMI8226 cells lost their viability upon anti-Fas treatment. The resistance of U266 cells to anti-Fas did not appear to reflect dysregulation of Bcl-2, Bcl-XL, and Bax, because these proteins were expressed in both RPMI8226 and U266 cells to similar levels. Moreover, levels of those proteins were not significantly altered by treating RPMI8226 cells with IL-6, a cytokine which suppresses the Fas-mediated death of RPMI8226 cells. Interestingly, mRNA levels of FLIPL, an endogenous inhibitor of Fas signaling, were constitutively elevated in U266 cells. Consistent with this observation, U266 cells expressed both FLIPL protein and its truncated 43 kDa product which is seen in FLIPL-overexpressing cells. The truncated form of FLIPL protein was not detected in RPMI8226. Moreover, the levels of truncated FLIPL in U266 cells were considerably higher than those of pro-FLIPL in RPMI8226. The overall data indicate that FLIPL is constitutively hyperexpressed in U266 cells. However, IL-6 failed to enhance the protein levels of FLIP molecules in either of the tested cells. It appears, therefore, that FLIPL plays a role in the intrinsic resistance of U266 cells to the apoptotic action of Fas, but is not involved in the protective action of IL-6.  相似文献   

4.
Despite the wide use of anti-CD20 antibody rituximab in the cancer treatment of B cell malignancies, the signalling pathways of CD20-induced apoptosis are still not understood. By using dominant negative (DN)-caspase-9 overexpressing follicular lymphoma cells we demonstrated that the activation of caspase-9 was essential for rituximab-mediated apoptosis. The death receptor pathway mediated by caspase-8 activation was not involved in rituximab-mediated apoptosis since overexpression of FLIPshort or FLIPlong proteins, inhibitors of caspase-8 activation, could not inhibit rituximab-induced apoptosis. However, the death receptor pathway activation by anti-Fas antibodies showed an additive effect on rituximab-induced apoptosis. The stabilisation of the mitochondrial outer membrane by Bcl-xL overexpression inhibited cell death, showing the important role of mitochondria in rituximab-induced apoptosis. Interestingly, the rituximab-induced release of cytochrome c and collapse of mitochondrial membrane potential were regulated by caspase-9. We suggest that caspase-9 and downstream caspases may feed back to mitochondria to amplify mitochondrial disruption during intrinsic apoptosis.  相似文献   

5.
Neuroblastoma represents the most common and deadly solid tumour of childhood, which disparate biological and clinical behaviour can be explained by differential regulation of apoptosis. To understand mechanisms underlying death resistance in neuroblastoma cells, we developed small hairpin of RNA produced by lentiviral vectors as tools to selectively interfere with FLIPL, a major negative regulator of death receptor-induced apoptosis. Such tools revealed highly efficient in interfering with FLIPL expression and function as they almost completely repressed endogenous and/or exogenously overexpressed FLIPL protein and fully reversed FLIPL-mediated TRAIL resistance. Moreover, interference with endogenous FLIPL and FLIPS significantly restored FasL sensitivity in SH-EP neuroblastoma cell line. These results reveal the ability of lentivirus-mediated shRNAs to specifically and persistently interfere with FLIP expression and support involvement of FLIP in the regulation of death receptor-mediated apoptosis in neuroblastoma cells. Combining such tools with other therapeutic modalities may improve treatment of resistant tumours such as neuroblastoma.  相似文献   

6.
Increased activation of the epidermal growth factor receptor (EGFR) is frequently observed in tumors, and inhibition of the signaling pathways originated in the EGFR normally renders tumor cells more sensitive to apoptotic stimuli. However, we show that inhibition of EGFR signaling in non-transformed breast epithelial cells by EGF deprivation or gefitinib, an inhibitor of EGFR tyrosine kinase, causes the upregulation of the long isoform of caspase-8 inhibitor FLICE-inhibitory protein (FLIPL) and makes these cells more resistant to the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). We demonstrate that the extracellular signal-regulated kinase (ERK)1/2 pathway plays a pivotal role in the regulation of FLIPL levels and sensitivity to TRAIL-induced apoptosis by EGF. Upregulation of FLIPL upon EGF deprivation correlates with a decrease in c-Myc levels and c-Myc knockdown by siRNA induces FLIPL expression. FLIPL upregulation and resistance to TRAIL in EGF-deprived cells are reversed following activation of an estrogen activatable form of c-Myc (c-Myc-ER). Finally, constitutive activation of the ERK1/2 pathway in HER2/ERBB2-transformed cells prevents EGF deprivation-induced FLIPL upregulation and TRAIL resistance. Collectively, our results suggest that a regulated ERK1/2 pathway is crucial to control FLIPL levels and sensitivity to TRAIL in non-transformed cells, and this mechanism may explain the increased sensitivity of tumor cells to TRAIL, in which the ERK1/2 pathway is frequently deregulated.  相似文献   

7.
Various molecular mechanisms are involved in the efficacy of arsenic trioxide (ATO) against malignant hematologic and some solid tumors. FLICE-like inhibitory protein (FLIP) is an inhibitor of apoptosis mediated by death receptors. In this study, we identified a new link between the down-regulation of cellular FLIPL and ATO-induced autophagy. ATO induced the degradation of FLIPL in K562 and MGC803 cells, which was mediated by the ubiquitin-proteasome pathway. Moreover, the casitas B-lineage lymphoma-b (Cbl-b) was involved in this process, which interacted with FLIPL and promoted proteasomal degradation of FLIPL. Our findings lead to a better understanding of the mechanism of action of ATO, and suggest that a novel signaling pathway is required for ATO-induced autophagy in K562 and MGC803 cells.

Structured summary of protein interactions

FLIP-Lphysically interacts with CBL-B by anti bait coimmunoprecipitation (View interaction)  相似文献   

8.
Caspase-8, the initiator of extrinsically-triggered apoptosis, also has important functions in cellular activation and differentiation downstream of a variety of cell surface receptors. It has become increasingly clear that the heterodimer of caspase-8 with the long isoform of cellular FLIP (FLIPL) fulfills these pro-survival functions of caspase-8. FLIPL, a catalytically defective caspase-8 paralog, can interact with caspase-8 to activate its catalytic function. The caspase-8/FLIPL heterodimer has a restricted substrate repertoire and does not induce apoptosis. In essence, caspase-8 heterodimerized with FLIPL prevents the receptor interacting kinases RIPK1 and -3 from executing the form of cell death known as necroptosis. This review discusses the latest insights in caspase-8 homo- versus heterodimerization and the implication this has for cellular death or survival. This article is part of a Special Issue entitled: Proteolysis 50 years after the discovery of lysosome.  相似文献   

9.
B cell leukemia-3 (Bcl-3) has been defined as an anti-apoptotic gene; however, the exact mechanisms through which Bcl-3 influences apoptosis have been elusive. To determine the specific role of Bcl-3 in apoptosis, we evaluated the effect of its silencing on the expression of proteins involved in either the extrinsic or intrinsic apoptotic pathways induced by ultraviolet light B-mediated DNA damage. We found that, in Bcl-3-silenced cells, caspase-3, caspase-8 and caspase-9 activation is accelerated and tBid mitochondrial content is increased. It is important to note that, although mitochondrial Smac levels were reduced after UV exposure, the rate of reduction was slightly higher in Bcl-3 silenced cells than in control cells. Additionally, p53 levels diminished in Bcl-3 silenced cells compared to control cells, as did those of DNA-PK, a DNA repair protein. Altogether, our data indicate that Bcl-3 protects cells from apoptosis by regulating both apoptotic pathways.  相似文献   

10.
11.
The variant cell line U937V was originally identified by a higher sensitivity to the cytocidal action of tumor necrosis factor alpha (TNFα) than that of its reference cell line, U937. We noticed that a typical morphological feature of dying U937V cells was the lack of cellular disintegration, which contrasts to the formation of apoptotic bodies seen with dying U937 cells. We found that both TNFα, which induces the extrinsic apoptotic pathway, and etoposide (VP-16), which induces the intrinsic apoptotic pathway, stimulated U937V cell death without cell disintegration. In spite of the distinct morphological differences between the U937 and U937V cells, the basic molecular events of apoptosis, such as internucleosomal DNA degradation, phosphatidylserine exposure on the outer leaflet of the plasma membrane, caspase activation and cytochrome c release, were evident in both cell types when stimulated with both types of apoptosis inducer. In the U937V cells, we noted an accelerated release of cytochrome c, an accelerated decrease in mitochondrial membrane potential, and a more pronounced generation of reactive oxygen species compared to the reference cells. We propose that the U937 and U937V cell lines could serve as excellent comparison models for studies on the mechanisms regulating the processes of cellular disintegration during apoptosis, such as blebbing (zeiosis) and apoptotic body formation.  相似文献   

12.
Activated immune cells secrete proinflammatory cytokines such as tumor necrosis factor alpha (TNF-alpha), interferon–gamma (IFN-gamma) and Fas ligand (FasL) and these cytokines have been reported to induce apoptosis in numerous cell types. Apoptotic cell death has been associated with the progression of numerous autoimmune diseases. Proinflammatory cytokines are reportedly involved in apoptosis in the salivary glands of patients with Sjögren’s syndrome (SS); an autoimmune disorder characterized by the destruction of salivary and lachrymal glands. In this study, we used the HSG cell line to determine if exposure to proinflammatory cytokines induces apoptosis in human salivary gland cells. In addition, we identified the mediators controlling the apoptotic process in response to TNF alpha and IFN gamma. TNF-alpha and IFN-gamma induced apoptosis in HSG cells and resulted in the activation of caspase 8 and the “death receptor” pathway. We further determined that caspase 9 and the “mitochondrial” pathway was also activated. Induction of the intrinsic and extrinsic pathways in HSG cells resulted in substrate cleavage by effector caspases, in particular the cleavage of alpha II spectrin, an autoantigen in Sjögren’s syndrome. Our results suggest that HSG cells provide a model system to study processes regulating proinflammatory cytokine-induced apoptotic cell death.  相似文献   

13.
PurposeIL-13, TNF-α and IL-1β have various effects on lung cancer growth and death, but the signaling pathways mediating these effects have not been extensively analyzed. Therefore, the effects of IL-13, TNF-α and IL-1β alone, and in combination with Fas, on cell viability and death as well as major signaling pathways involved in these effects were investigated in A549 lung carcinoma cells.ResultsUsing MTT and flow cytometry, IL-13, TNF-α and IL-1β pretreatment decreased Fas-induced cell death. These anti-cell death effects were attenuated by pretreatment with inhibitors of Nuclear factor-κB [NF-κB], Phoshatidylinositole-3 kinase [PI3-K], JNK, p38 and ERK1/2 pathways.Using Western blot, IL-13, TNF-α and IL-1β treated cells showed time-dependent expression of p-ERK1/2, p-p38, p-JNK, p-Akt and p-IκBα proteins, decreased IκBα protein expression, no cleavage of Caspase-3 and PARP1 proteins and no notable alterations of Fas protein. IL-13 and TNF-α treated cells showed time-dependent increase of FLIPL expression.ConclusionIL-13, TNF-α and IL-1β attenuate the pro-cell death effects of Fas on A549 cells, at least partially, by pathways involving the NF-κB, PI3-K and MAP kinases, but not by alterations of Fas protein expression. The IL-13 and TNF-α cell survival effects may also be due to increased expression of FLIPL protein.  相似文献   

14.
Apoptosis or programmed cell death is a regulatory process in cells in response to stimuli perturbing physiological conditions. The Bcl‐2 family of proteins plays an important role in regulating homeostasis during apoptosis. In the process, the molecular interactions among the three members of this family, the pro‐apoptotic, anti‐apoptotic and BH3‐only proteins at the mitochondrial outer membrane define the fate of a cell. Here, we report the crystal structures of the human anti‐apoptotic protein Bcl‐XL in complex with BH3‐only BIDBH3 and BIMBH3 peptides determined at 2.0 Å and 1.5 Å resolution, respectively. The BH3 peptides bind to the canonical hydrophobic pocket in Bcl‐XL and adopt an alpha helical conformation in the bound form. Despite a similar structural fold, a comparison with other BH3 complexes revealed structural differences due to their sequence variations. In the Bcl‐XL‐BIDBH3 complex we observed a large pocket, in comparison with other BH3 complexes, lined by residues from helices α1, α2, α3, and α5 located adjacent to the canonical hydrophobic pocket. These results suggest that there are differences in the mode of interactions by the BH3 peptides that may translate into functional differences in apoptotic regulation. Proteins 2015; 83:1262–1272. © 2015 Wiley Periodicals, Inc.  相似文献   

15.
Here, we present evidence for a specific role of the splicing-related factor TCERG1 in regulating apoptosis in live cells by modulating the alternative splicing of the apoptotic genes Bcl-x and Fas. We show that TCERG1 modulates Bcl-x alternative splicing during apoptosis and its activity in Bcl-x alternative splicing correlates with the induction of apoptosis, as determined by assessing dead cells, sub-G1-phase cells, annexin-V binding, cell viability, and cleavage of caspase-3 and PARP-1. Furthermore, the effect of TCERG1 on apoptosis involved changes in mitochondrial membrane permeabilization. We also found that depletion of TCERG1 reduces the expression of the activated form of the pro-apoptotic mitochondrial membrane protein Bak, which remains inactive by heterodimerizing with Bcl-xL, preventing the initial step of cytochrome c release in Bak-mediated mitochondrial apoptosis. In addition, we provide evidence that TCERG1 also participates in the death receptor-mediated apoptosis pathway. Interestingly, TCERG1 also modulates Fas/CD95 alternative splicing. We propose that TCERG1 sensitizes a cell to apoptotic agents, thus promoting apoptosis by regulating the alternative splicing of both the Bcl-x and Fas/CD95 genes. Our findings may provide a new link between the control of alternative splicing and the molecular events leading to apoptosis.  相似文献   

16.
Apoptosis is induced by various stresses generated from the extracellular and intracellular environments. The fidelity of the cell cycle is monitored by surveillance mechanisms that arrest its further progression if any crucial process has not been completed or damages are sustained, and then the cells with problems undergo apoptosis. Although the molecular mechanisms involved in the regulation of the cell cycle and that of apoptosis have been elucidated, the links between them are not clear, especially that between cell cycle and death receptor-mediated apoptosis. By using the HeLa.S-Fucci (fluorescent ubiquitination-based cell cycle indicator) cells, we investigated the relationship between the cell cycle progression and apoptotic execution. To monitor apoptotic execution during cell cycle progression, we observed the cells after induction of apoptosis with time-lapse fluorescent microscopy. About 70% of Fas-mediated apoptotic cells were present at G1 phase and about 20% of cells died immediately after cytokinesis, whereas more than 60% of etoposide-induced apoptotic cells were at S/G2 phases in random culture of the cells. These results were confirmed by using synchronized culture of the cells. Furthermore, mitotic cells showed the resistance to Fas-mediated apoptosis. In conclusion, these findings suggest that apoptotic execution is dependent on cell cycle phase and Fas-mediated apoptosis preferentially occurs at G1 phase.  相似文献   

17.
Migration and invasion of malignant cells are prerequisites for cancer progression and metastasis. The Bcl-2 family of proteins consists of about 25 members and has been extensively studied in the context of apoptosis. Despite the fact that small molecules targeting Bcl-2 proteins have already entered clinical trials, very few studies investigated a role of antiapoptotic Bcl-2 proteins beside cell death in the context of metastasis. The aim of this study was to dissect a potential role of the antiapoptotic Bcl-2 proteins Mcl-1, Bcl-2 and Bcl-xL on migration and invasion of colorectal cancer cells independent of their cell death control function. We used migration and invasion assays as well as three dimensional cell cultures to analyze colorectal cancer cell lines (HT29 and SW480) after siRNA mediated knockdown or overexpression of Mcl-1, Bcl-2 or Bcl-xL. We observed neither spontaneous cell death induction nor impaired proliferation of cells lacking Mcl-1, Bcl-2 or Bcl-xL. In contrast, knockdown of Mcl-1 led to increased proliferation. Strikingly, we demonstrate a profound impairment of both, migration and invasion, of colorectal cancer cells after Mcl-1, Bcl-2 or Bcl-xL knockdown. This phenotype was completely revised in cells overexpressing Mcl-1, Bcl-2 or Bcl-xL. The most pronounced effect among the investigated proteins was observed for Bcl-2. The data presented indicate a pivotal role of Mcl-1, Bcl-2 and Bcl-xL for migration and invasion of colorectal cancer cells independent of their known antiapoptotic effects. Thus, our study illustrates novel antitumoral mechanisms of Bcl-2 protein targeting.  相似文献   

18.
Jeong SY  Seol DW 《BMB reports》2008,41(1):11-22
Apoptosis (programmed cell death) is a cellular self-destruction mechanism that is essential for a variety of biological events, such as developmental sculpturing, tissue homeostasis, and the removal of unwanted cells. Mitochondria play a crucial role in regulating cell death. Ca2+ has long been recognized as a participant in apoptotic pathways. Mitochondria are known to modulate and synchronize Ca2+ signaling. Massive accumulation of Ca2+ in the mitochondria leads to apoptosis. The Ca2+ dynamics of ER and mitochondria appear to be modulated by the Bcl-2 family proteins, key factors involved in apoptosis. The number and morphology of mitochondria are precisely controlled through mitochondrial fusion and fission process by numerous mitochondria-shaping proteins. Mitochondrial fission accompanies apoptotic cell death and appears to be important for progression of the apoptotic pathway. Here, we highlight and discuss the role of mitochondrial calcium handling and mitochondrial fusion and fission machinery in apoptosis.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号