首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The initiation of eukaryotic DNA replication requires the assembly of active CMG (Cdc45‐MCM‐GINS) helicases at replication origins by a set of conserved and essential firing factors. This process is controlled during the cell cycle by cyclin‐dependent kinase (CDK) and Dbf4‐dependent kinase (DDK), and in response to DNA damage by the checkpoint kinase Rad53/Chk1. Here we show that Sld3, previously shown to be an essential CDK and Rad53 substrate, is recruited to the inactive MCM double hexamer in a DDK‐dependent manner. Sld3 binds specifically to DDK‐phosphorylated peptides from two MCM subunits (Mcm4, 6) and then recruits Cdc45. MCM mutants that cannot bind Sld3 or Sld3 mutants that cannot bind phospho‐MCM or Cdc45 do not support replication. Moreover, phosphomimicking mutants in Mcm4 and Mcm6 bind Sld3 without DDK and facilitate DDK‐independent replication. Thus, Sld3 is an essential “reader” of DDK phosphorylation, integrating signals from three distinct protein kinase pathways to coordinate DNA replication during S phase.  相似文献   

2.
Dbf4 is a conserved eukaryotic protein that functions as the regulatory subunit of the Dbf4-dependent kinase (DDK) complex. DDK plays essential roles in DNA replication initiation and checkpoint activation. During the replication checkpoint, Saccharomyces cerevisiae Dbf4 is phosphorylated in a Rad53-dependent manner, and this, in turn, inhibits initiation of replication at late origins. We have determined the minimal region of Dbf4 required for the interaction with the checkpoint kinase Rad53 and solved its crystal structure. The core of this fragment of Dbf4 folds as a BRCT domain, but it includes an additional N-terminal helix unique to Dbf4. Mutation of the residues that anchor this helix to the domain core abolish the interaction between Dbf4 and Rad53, indicating that this helix is an integral element of the domain. The structure also reveals that previously characterized Dbf4 mutants with checkpoint phenotypes destabilize the domain, indicating that its structural integrity is essential for the interaction with Rad53. Collectively, these results allow us to propose a model for the association between Dbf4 and Rad53.  相似文献   

3.
Dohrmann PR  Sclafani RA 《Genetics》2006,174(1):87-99
A novel role for Rad53 in the initiation of DNA replication that is independent of checkpoint or deoxynucleotide regulation is proposed. Rad53 kinase is part of a signal transduction pathway involved in the DNA damage and replication checkpoints, while Cdc7-Dbf4 kinase (DDK) is important for the initiation of DNA replication. In addition to the known cdc7-rad53 synthetic lethality, rad53 mutations suppress mcm5-bob1, a mutation in the replicative MCM helicase that bypasses DDK's essential role. Rad53 kinase activity but neither checkpoint FHA domain is required. Conversely, Rad53 kinase can be activated without DDK. Rad53's role in replication is independent of both DNA and mitotic checkpoints because mutations in other checkpoint genes that act upstream or downstream of RAD53 or in the mitotic checkpoint do not exhibit these phenotypes. Because Rad53 binds an origin of replication mainly through its kinase domain and rad53 null mutants display a minichromosome loss phenotype, Rad53 is important in the initiation of DNA replication, as are DDK and Mcm2-7 proteins. This unique requirement for Rad53 can be suppressed by the deletion of the major histone H3/H4 gene pair, indicating that Rad53 may be regulating initiation by controlling histone protein levels and/or by affecting origin chromatin structure.  相似文献   

4.
The yeast Saccharomyces cerevisiae Cdc7p/Dbf4p protein kinase complex was purified to near homogeneity from insect cells. The complex efficiently phosphorylated yeast Mcm2p and less efficiently the remaining Mcm proteins or other replication proteins. Significantly, when pretreated with alkaline phosphatase, Mcm2p became completely inactive as a substrate, suggesting that it must be phosphorylated by other protein kinase(s) to be a substrate for the Cdc7p/Dbf4p complex. Mutant Cdc7p/Dbf4p complexes containing either Cdc7-1p or Dbf4-1 approximately 5p were also partially purified from insect cells and characterized in vitro. Furthermore, the autonomously replicating sequence binding activity of various dbf4 mutants was also analyzed. These studies suggest that the autonomously replicating sequence-binding and Cdc7p protein kinase activation domains of Dbf4p collaborate to form an active Cdc7p/Dbf4p complex and function during S phase in S. cerevisiae. It is shown that Rad53p phosphorylates the Cdc7p/Dbf4p complex in vitro and that this phosphorylation greatly inhibits the kinase activity of Cdc7p/Dbf4p. This result suggests that Rad53p controls the initiation of chromosomal DNA replication by regulating the protein kinase activity associated with the Cdc7p/Dbf4p complex.  相似文献   

5.
The essential cell cycle target of the Dbf4/Cdc7 kinase (DDK) is the Mcm2–7 helicase complex. Although Mcm4 has been identified as the critical DDK phosphorylation target for DNA replication, it is not well understood which of the six Mcm2–7 subunits actually mediate(s) docking of this kinase complex. We systematically examined the interaction between each Mcm2–7 subunit with Dbf4 and Cdc7 through two-hybrid and co-immunoprecipitation analyses. Strikingly different binding patterns were observed, as Dbf4 interacted most strongly with Mcm2, whereas Cdc7 displayed association with both Mcm4 and Mcm5. We identified an N-terminal Mcm2 region required for interaction with Dbf4. Cells expressing either an Mcm2 mutant lacking this docking domain (Mcm2ΔDDD) or an Mcm4 mutant lacking a previously identified DDK docking domain (Mcm4ΔDDD) displayed modest DNA replication and growth defects. In contrast, combining these two mutations resulted in synthetic lethality, suggesting that Mcm2 and Mcm4 play overlapping roles in the association of DDK with MCM rings at replication origins. Consistent with this model, growth inhibition could be induced in Mcm4ΔDDD cells through Mcm2 overexpression as a means of titrating the Dbf4-MCM ring interaction. This growth inhibition was exacerbated by exposing the cells to either hydroxyurea or methyl methanesulfonate, lending support for a DDK role in stabilizing or restarting replication forks under S phase checkpoint conditions. Finally, constitutive overexpression of each individual MCM subunit was examined, and genotoxic sensitivity was found to be specific to Mcm2 or Mcm4 overexpression, further pointing to the importance of the DDK-MCM ring interaction.  相似文献   

6.
Dbf4/Cdc7 is required for DNA replication in Saccharomyces cerevisiae and appears to be a target in the S-phase checkpoint. Previously, a 186-amino-acid Dbf4 region that mediates interactions with both the origin recognition complex and Rad53 was identified. We now show this domain also mediates the association between Dbf4 and Mcm2, a key Dbf4/Cdc7 phosphorylation target. Two conserved sequences, the N and M motifs, have been identified within this Dbf4 region. Removing motif M (Dbf4DeltaM) impairs the ability of Dbf4 to support normal cell cycle progression and abrogates the Dbf4-Mcm2 association but has no effect on the Dbf4-Rad53 interaction. In contrast, deleting motif N (Dbf4DeltaN) does not affect the essential function of Dbf4, disrupts the Dbf4-Rad53 interaction, largely preserves the Dbf4-Mcm2 association, and renders the cells hypersensitive to genotoxic agents. Surprisingly, Dbf4DeltaM interacts strongly with Orc2, while Dbf4DeltaN does not. The DBF4 allele dna52-1 was cloned and sequenced, revealing a single point mutation within the M motif. This mutant is unable to maintain interactions with either Mcm2 or Orc2 at the semipermissive temperature of 30 degrees C, while the interaction with Rad53 is preserved. Furthermore, this mutation confers increased resistance to genotoxic agents, which we propose is more likely due to a role for Dbf4 in the resumption of fork progression following checkpoint-induced arrest than prevention of late origin firing. Thus, the alteration of the M motif may facilitate the role of Dbf4 as a checkpoint target.  相似文献   

7.
Dbf4/Cdc7 (Dbf4-dependent kinase (DDK)) is activated at the onset of S-phase, and its kinase activity is required for DNA replication initiation from each origin. We showed that DDK is an important target for the S-phase checkpoint in mammalian cells to suppress replication initiation and to protect replication forks. We demonstrated that ataxia telangiectasia mutated (ATM) and ataxia telangiectasia and Rad3-related (ATR) proteins directly phosphorylate Dbf4 in response to ionizing radiation and replication stress. We identified novel ATM/ATR phosphorylation sites on Dbf4 and showed that ATM/ATR-mediated phosphorylation of Dbf4 is critical for the intra-S-phase checkpoint to inhibit DNA replication. The kinase activity of DDK, which is not suppressed upon DNA damage, is required for fork protection under replication stress. We further demonstrated that ATM/ATR-mediated phosphorylation of Dbf4 is important for preventing DNA rereplication upon loss of replication licensing through the activation of the S-phase checkpoint. These studies indicate that DDK is a direct substrate of ATM and ATR to mediate the intra-S-phase checkpoint in mammalian cells.  相似文献   

8.
Dbf4p is an essential regulatory subunit of the Cdc7p kinase required for the initiation of DNA replication. Cdc7p and Dbf4p orthologs have also been shown to function in the response to DNA damage. A previous Dbf4p multiple sequence alignment identified a conserved approximately 40-residue N-terminal region with similarity to the BRCA1 C-terminal (BRCT) motif called "motif N." BRCT motifs encode approximately 100-amino-acid domains involved in the DNA damage response. We have identified an expanded and conserved approximately 100-residue N-terminal region of Dbf4p that includes motif N but is capable of encoding a single BRCT-like domain. Dbf4p orthologs diverge from the BRCT motif at the C terminus but may encode a similar secondary structure in this region. We have therefore called this the BRCT and DBF4 similarity (BRDF) motif. The principal role of this Dbf4p motif was in the response to replication fork (RF) arrest; however, it was not required for cell cycle progression, activation of Cdc7p kinase activity, or interaction with the origin recognition complex (ORC) postulated to recruit Cdc7p-Dbf4p to origins. Rad53p likely directly phosphorylated Dbf4p in response to RF arrest and Dbf4p was required for Rad53p abundance. Rad53p and Dbf4p therefore cooperated to coordinate a robust cellular response to RF arrest.  相似文献   

9.
Principally characterized for its requirement in the initiation of DNA replication, compelling evidence from two yeast model organisms now points to a central role for the Dbf4/Cdc7 kinase complex in S-phase checkpoint responses. Among the key findings supporting this view are observations that orthologs Dfp1 (Schizosaccharomyces pombe) and Dbf4 (Saccharomyces cerevisiae) interact with equivalent checkpoint kinases Cds1 and Rad53, respectively, and that mutants for Dbf4 and Cdc7 in these species are sensitive to genotoxic agents. Recently, these findings have been extended through mutational analyses of conserved regions in both Dfp1 and Dbf4, leading to the identification of distinct motifs which mediate cellular responses to DNA damage and replication fork arrest. The present review is a comparative survey of data obtained from studies conducted with S. pombe and S. cerevisae, and a consideration of models for the role played by Dbf4/Cdc7 in checkpoint responses.  相似文献   

10.
Eukaryotic cells coordinate chromosome duplication by assembly of protein complexes at origins of DNA replication and by activation of cyclin-dependent kinase and Cdc7p-Dbf4p kinase. We show in Saccharomyces cerevisiae that although Cdc7p levels are constant during the cell division cycle, Dbf4p and Cdc7p-Dbf4p kinase activity fluctuate. Dbf4p binds to chromatin near the G(1)/S-phase boundary well after binding of the minichromosome maintenance (Mcm) proteins, and it is stabilized at the non-permissive temperature in mutants of the anaphase-promoting complex, suggesting that Dbf4p is targeted for destruction by ubiquitin-mediated proteolysis. Arresting cells with hydroxyurea (HU) or with mutations in genes encoding DNA replication proteins results in a more stable, hyper-phosphorylated form of Dbf4p and an attenuated kinase activity. The Dbf4p phosphorylation in response to HU is RAD53 dependent. This suggests that an S-phase checkpoint function regulates Cdc7p-Dbf4p kinase activity. Cdc7p may also play a role in adapting from the checkpoint response since deletion of CDC7 results in HU hypersensitivity. Recombinant Cdc7p-Dbf4p kinase was purified and both subunits were autophosphorylated. Cdc7p-Dbf4p efficiently phosphorylates several proteins that are required for the initiation of DNA replication, including five of the six Mcm proteins and the p180 subunit of DNA polymerase alpha-primase.  相似文献   

11.
Activation of the eukaryotic replicative DNA helicase, the Mcm2-7 complex, requires phosphorylation by Cdc7/Dbf4 (Dbf4-dependent kinase or DDK), which, in turn, depends on prior phosphorylation of Mcm2-7 by an unknown kinase (or kinases). We identified DDK phosphorylation sites on Mcm4 and Mcm6 and found that phosphorylation of either subunit suffices for cell proliferation. Importantly, prior phosphorylation of either S/T-P or S/T-Q motifs on these subunits is required for DDK phosphorylation of Mcm2-7 and for normal S phase passage. Phosphomimetic mutations of DDK target sites bypass both DDK function and mutation of the priming phosphorylation sites. Mrc1 facilitates Mec1 phosphorylation of the S/T-Q motifs of chromatin-bound Mcm2-7 during S phase to activate replication. Genetic interactions between priming site mutations and MRC1 or TOF1 deletion support a role for these modifications in replication fork stability. These findings identify regulatory mechanisms that modulate origin firing and replication fork assembly during cell cycle progression.  相似文献   

12.
When inappropriate DNA structures arise, they are sensed by DNA structure-dependent checkpoint pathways and subsequently repaired. Recruitment of checkpoint proteins to such structures precedes recruitment of proteins involved in DNA metabolism. Thus, checkpoints can regulate DNA metabolism. We show that fission yeast Rad9, a 9-1-1 heterotrimeric checkpoint-clamp component, is phosphorylated by Hsk1(Cdc7), the Schizosaccharomyces pombe?Dbf4-dependent kinase (DDK) homolog, in response to replication-induced DNA damage. Phosphorylation of Rad9 disrupts its interaction with replication protein A (RPA) and is dependent on 9-1-1 chromatin loading, the Rad9-associated protein Rad4/Cut5(TopBP1), and prior phosphorylation by Rad3(ATR). rad9 mutants defective in DDK phosphorylation show wild-type checkpoint responses but abnormal DNA repair protein foci and decreased viability after replication stress. We propose that Rad9 phosphorylation by DDK releases Rad9 from DNA damage sites to facilitate DNA repair.  相似文献   

13.
The Cdc7p and Dbf4p proteins form an active kinase complex in Saccharomyces cerevisiae that is essential for the initiation of DNA replication. A genetic screen for mutations that are lethal in combination with cdc7-1 led to the isolation of seven lsd (lethal with seven defect) complementation groups. The lsd7 complementation group contained two temperature-sensitive dbf4 alleles. The lsd1 complementation group contained a new allele of RAD53, which was designated rad53-31. RAD53 encodes an essential protein kinase that is required for the activation of DNA damage and DNA replication checkpoint pathways, and that is implicated as a positive regulator of S phase. Unlike other RAD53 alleles, we demonstrate that the rad53-31 allele retains an intact checkpoint function. Thus, the checkpoint function and the DNA replication function of RAD53 can be functionally separated. The activation of DNA replication through RAD53 most likely occurs through DBF4. Two-hybrid analysis indicates that the Rad53p protein binds to Dbf4p. Furthermore, the steady-state level of DBF4 message and Dbf4p protein is reduced in several rad53 mutant strains, indicating that RAD53 positively regulates DBF4. These results suggest that two different functions of the cell cycle, initiation of DNA replication and the checkpoint function, can be coordinately regulated through the common intermediate RAD53.  相似文献   

14.
T Tanaka  K Nasmyth 《The EMBO journal》1998,17(17):5182-5191
Eukaryotic cells use multiple replication origins to replicate their large genomes. Some origins fire early during S phase whereas others fire late. In Saccharomyces cerevisiae, initiator sequences (ARSs) are bound by the origin recognition complex (ORC). Cdc6p synthesized at the end of mitosis joins ORC and facilitates recruitment of Mcm proteins, which renders origins competent to fire. However, origins fire only upon the subsequent activation of S phase cyclin-dependent kinases (S-CDKs) and Dbf4/Cdc7 at the G1/S boundary. We have used a chromatin immunoprecipitation assay to measure the association with ARS sequences of DNA primase and the single-stranded DNA binding replication protein A (RPA) when fork movement is inhibited by hydroxyurea (HU). RPA's association with origins requires S-CDKs, Dbf4/Cdc7 kinase and an Mcm protein. The recruitment of DNA primase depends on RPA. Furthermore, early- and late-firing origins differ not in the timing of their recruitment of an Mcm protein, but in the timing of RPA's recruitment. RPA is recruited to early but not to late origins in HU. We also show that Rad53 kinase is required to prevent RPA association with a late origin in HU. Our data suggest that the origin unwinding accompanied by RPA association is a key step, regulated by S-CDKs, Dbf4/Cdc7 and Rad53p. Thus, in the presence of active S-CDKs and Dbf4/Cdc7, Mcms may open origins and thereby facilitate the loading of RPA.  相似文献   

15.
The E3 ubiquitin ligase Rad18 guides DNA Polymerase eta (Polη) to sites of replication fork stalling and mono-ubiquitinates proliferating cell nuclear antigen (PCNA) to facilitate binding of Y family trans-lesion synthesis (TLS) DNA polymerases during TLS. However, it is unclear exactly how Rad18 is regulated in response to DNA damage and how Rad18 activity is coordinated with progression through different phases of the cell cycle. Here we identify Rad18 as a novel substrate of the essential protein kinase Cdc7 (also termed Dbf4/Drf1-dependent Cdc7 kinase [DDK]). A serine cluster in the Polη-binding motif of Rad 18 is phosphorylated by DDK. Efficient association of Rad18 with Polη is dependent on DDK and is necessary for redistribution of Polη to sites of replication fork stalling. This is the first demonstration of Rad18 regulation by direct phosphorylation and provides a novel mechanism for integration of S phase progression with postreplication DNA repair to maintain genome stability.  相似文献   

16.
In budding yeast, Dbf4p and Cdc7p control initiation of DNA synthesis. They form a protein kinase - Cdc7p being the catalytic subunit and Dbf4p a cyclin-like molecule that activates the kinase in late G1 phase. Dbf4p also targets Cdc7p to origins of replication, where probable substrates include certain Mcm proteins. Recent studies have identified Dbf4p- and Cdc7p-related proteins in fission yeast and metazoans. These homologues also phosphorylate Mcm proteins and could have a similar function to that of Dbf4p-Cdc7p in budding yeast. Thus, it seems likely that, like the cyclin-dependent kinases (CDKs), the Dbf4p-Cdc7p activity is conserved in all eukaryotes.  相似文献   

17.
The replication fork helicase in eukaryotes is composed of Cdc45, Mcm2-7, and GINS (CMG). The Dbf4-Cdc7 kinase phosphorylates Mcm2 in vitro, but the in vivo role for Dbf4-Cdc7 phosphorylation of Mcm2 is unclear. We find that budding yeast Dbf4-Cdc7 phosphorylates Mcm2 in vivo under normal conditions during S phase. Inhibiting Dbf4-Cdc7 phosphorylation of Mcm2 confers a dominant-negative phenotype with a severe growth defect. Inhibiting Dbf4-Cdc7 phosphorylation of Mcm2 under wild-type expression conditions also results in impaired DNA replication, substantially decreased single-stranded formation at an origin, and markedly disrupted interaction between GINS and Mcm2-7 during S phase. In vitro, Dbf4-Cdc7 kinase (DDK) phosphorylation of Mcm2 substantially weakens the interaction between Mcm2 and Mcm5, and Dbf4-Cdc7 phosphorylation of Mcm2 promotes Mcm2-7 ring opening. The extrusion of ssDNA from the central channel of Mcm2-7 triggers GINS attachment to Mcm2-7. Thus, Dbf4-Cdc7 phosphorylation of Mcm2 may open the Mcm2-7 ring at the Mcm2-Mcm5 interface, allowing for single-stranded DNA extrusion and subsequent GINS assembly with Mcm2-7.  相似文献   

18.
Eukaryotic DNA replication initiates from multiple replication origins. To ensure each origin fires just once per cell cycle, initiation is divided into two biochemically discrete steps: the Mcm2‐7 helicase is first loaded into prereplicative complexes (pre‐RCs) as an inactive double hexamer by the origin recognition complex (ORC), Cdt1 and Cdc6; the helicase is then activated by a set of “firing factors.” Here, we show that plasmids containing pre‐RCs assembled with purified proteins support complete and semi‐conservative replication in extracts from budding yeast cells overexpressing firing factors. Replication requires cyclin‐dependent kinase (CDK) and Dbf4‐dependent kinase (DDK). DDK phosphorylation of Mcm2‐7 does not by itself promote separation of the double hexamer, but is required for the recruitment of firing factors and replisome components in the extract. Plasmid replication does not require a functional replication origin; however, in the presence of competitor DNA and limiting ORC concentrations, replication becomes origin‐dependent in this system. These experiments indicate that Mcm2‐7 double hexamers can be precursors of replication and provide insight into the nature of eukaryotic DNA replication origins.  相似文献   

19.
20.
In all eukaryotes, the initiation of DNA synthesis requires the formation of prereplicative complexes (pre-RCs) on replication origins, followed by their activation by two S-T protein kinases, an S-phase cyclin-dependent kinase (S-CDK) and a homologue of yeast Dbf4-Cdc7 kinase (Dbf4p-dependent kinase [DDK]). Here, we show that yeast DDK activity is cell cycle regulated, though less tightly than that of the S-CDK Clb5-Cdk1, and peaks during S phase in correlation with Dbf4p levels. Dbf4p is short-lived throughout the cell cycle, but its instability is accentuated during G(1) by the anaphase-promoting complex. Downregulating DDK activity is physiologically important, as joint Cdc7p and Dbf4p overexpression is lethal. Because pre-RC formation is a highly ordered process, we asked whether S-CDK and DDK need also to function in a specific order for the firing of origins. We found that both kinases are activated independently, but we show that DDK can perform its function for DNA replication only after S-CDKs have been activated. Cdc45p, a protein needed for initiation, binds tightly to chromatin only after S-CDK activation (L. Zou and B. Stillman, Science 280:593-596, 1998). We show that Cdc45p is phosphorylated by DDK in vitro, suggesting that it might be one of DDK's critical substrates after S-CDK activation. Linking the origin-bound DDK to the tightly regulated S-CDK in a dependent sequence of events may ensure that DNA replication initiates only at the right time and place.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号