首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Elevated hepatic expression of fatty acid elongase-5 (Elovl5) induces FoxO1 phosphorylation, lowers FoxO1 nuclear content, and suppresses expression of genes involved in gluconeogenesis (GNG). In this report, we define the molecular and metabolic basis of Elovl5 control of FoxO1 phosphorylation. Adenoviral-mediated (Ad-Elovl5) induction of hepatic Elovl5 in diet-induced obese, glucose-intolerant mice and HepG2 cells increased the phosphorylation of Akt2-S473 [mammalian target of rapamycin complex-2 (mTORC2) site], but not Akt2-T308 (PDK1 site). The Akt2 inhibitor Akti1/2 blocked Elovl5 induction of FoxO1-S256 phosphorylation in HepG2 cells. Elevated Elovl5 activity in liver and HepG2 cells induced rictor mRNA, rictor protein, and rictor-mTOR interaction, whereas rictor knockdown (siRNA) attenuated Elovl5 induction of Akt2-S473 and FoxO1-S256 phosphorylation in HepG2 cells. FA analysis revealed that the abundance of cis-vaccenic acid (18:1,n-7) was increased in livers of obese mice and HepG2 cells following Ad-Elovl5 infection. Treating HepG2 cells with Elovl5 substrates established that palmitoleic acid (16:1,n-7), but not γ-linolenic acid (18:3,n-6), induced rictor protein, Akt-S473, and FoxO1-S256 phosphorylation. Inhibition of FA elongation blocked 16:1,n-7 but not 18:1,n-7 induction of rictor protein and Akt-S473 and FoxO1-S256 phosphorylation. These results establish a novel link between Elovl5-mediated synthesis of 18:1,n-7 and GNG through the control of the mTORC2-Akt-FoxO1 pathway.  相似文献   

3.
4.
Platelet derived growth factor (PDGF) orchestrates wound healing and tissue regeneration by regulating recruitment of the precursor mesenchymal stromal cells (MSC) and fibroblasts. PDGF stimulates generation of hydrogen peroxide that is required for cell migration, but the sources and intracellular targets of H2O2 remain obscure. Here we demonstrate sustained live responses of H2O2 to PDGF and identify PKB/Akt, but not Erk1/2, as the target for redox regulation in cultured 3T3 fibroblasts and MSC. Apocynin, cell-permeable catalase and LY294002 inhibited PDGF-induced migration and mitotic activity of these cells indicating involvement of PI3-kinase pathway and H2O2. Real-time PCR revealed Nox4 and Duox1/2 as the potential sources of H2O2. Silencing of Duox1/2 in fibroblasts or Nox4 in MSC reduced PDGF-stimulated intracellular H2O2, PKB/Akt phosphorylation and migration, but had no such effect on Erk1/2. In contrast to PDGF, EGF failed to increase cytoplasmic H2O2, phosphorylation of PKB/Akt and migration of fibroblasts and MSC, confirming the critical impact of redox signaling. We conclude that PDGF-induced migration of mesenchymal cells requires Nox4 and Duox1/2 enzymes, which mediate redox-sensitive activation of PI3-kinase pathway and PKB/Akt.  相似文献   

5.
6.
Endochondral ossification orchestrates formation of the vertebrate skeleton and is often induced during disease and repair processes of the musculoskeletal system. Here we show that the protein phosphatase Phlpp1 regulates endochondral ossification. Phlpp1 null mice exhibit decreased bone mass and notable changes in the growth plate, including increased BrdU incorporation and matrix production. Phosphorylation of known Phlpp1 substrates, Akt2, PKC, and p70 S6 kinase, were enhanced in ex vivo cultured Phlpp1−/− chondrocytes. Furthermore, Phlpp1 deficiency diminished FoxO1 levels leading to increased expression of Fgf18, Mek/Erk activity, and chondrocyte metabolic activity. Phlpp inhibitors also increased matrix content, Fgf18 production and Erk1/2 phosphorylation. Chemical inhibition of Fgfr-signaling abrogated elevated Erk1/2 phosphorylation and metabolic activity in Phlpp1-null cultures. These results demonstrate that Phlpp1 controls chondrogenesis via multiple mechanisms and that Phlpp1 inhibition could be a strategy to promote cartilage regeneration and repair.  相似文献   

7.

Introduction

microRNAs (miRs), a novel class of small non-coding RNAs, are involved in cell proliferation, differentiation, development, and death. In this study, we found that miR-221 translocation by microvesicles (MVs) plays an important role in cardioprotection mediated by GATA-4 overexpressed mesenchymal stem cells (MSC).

Methods and Results

Adult rat bone marrow MSC and neonatal rat ventricle cardiomyocytes (CM) were harvested as primary cultures. MSC were transduced with GATA-4 (MSCGATA-4) using the murine stem cell virus (pMSCV) retroviral expression system. Empty vector transfection was used as a control (MSCNull). The expression of miRs was assessed by real-time PCR and localized using in situ hybridization (ISH). MVs collected from MSC cultures were characterized by expression of CD9, CD63, and HSP70, and photographed with electron microscopy. Cardioprotection during hypoxia afforded by conditioned medium (CdM) from MSC cultures was evaluated by lactate dehydrogenase (LDH) release, MTS uptake by CM, and caspase 3/7 activity. Expression of miR-221/222 was significantly higher in MSC than in CM and miR-221 was upregulated in MSCGATA-4. MSC overexpression of miR-221 significantly enhanced cardioprotection by reducing the expression of p53 upregulated modulator of apoptosis (PUMA). Moreover, expression of PUMA was significantly decreased in CM co-cultured with MSC. MVs derived from MSC expressed high levels of miR-221, and were internalized quickly by CM as documented in images obtained from a Time-Lapse Imaging System.

Conclusions

Our results demonstrate that cardioprotection by MSCGATA-4 may be regulated in part by a transfer of anti-apoptotic miRs contained within MVs.  相似文献   

8.
Ginsenoside Rb1 shows a strong antioxidant effect and has potential activation effects on Akt. The aim of the present study was to investigate the protective effect of Rb1 on age-related ovarian granulosa cell injury. Ovarian granulosa cells(GCs) were obtained from 50 young women(≤30 years) and 50 aged women(≥38 years) at an IVF center. Young and aged ICR mice were administered with or without Rb1(10 mg kg-1, i.p.) for 2 weeks. The protective effects of Rb1 were investigated and the r...  相似文献   

9.
Mounting evidence has reported that microRNA-143 (miR-143) is involved in the development of multiple cancers. To investigate the underlying mechanisms of miR-143 regulating proliferation and metastasis in nasopharyngeal carcinoma (NPC) cells, we evaluated the levels of miR-143 and formin-like protein 1 (FMNL1) in NPC tissues. The results of qRT-PCR and Western blot analysis showed that the expression of miR-143 was decreased, while FMNL1 was increased in NPC tissues. The expression of miR-143 was significantly elevated in NPC cells compared with that of human nasopharyngeal epithelial cells. The results of MiRcode prediction, dual-luciferase reporter, and Western blot analysis assays indicated that miR-143 negatively regulated the expression of FMNL1 (r2 = 0.4365P = 0.0001). Overexperssion of miR-143 or FMNL1 knockdown inhibited cell proliferation, migration, and invasion in NPC cells (P < 0.05). Ectopic expression of FMNL1 undermined the inhibition effect of miR-143 on proliferation, migration, and invasion in NPC cells. The findings of this study revealed that miR-143 functioned as a tumor suppressor and inhibited the NPC progression by targeting FMNL1.  相似文献   

10.
11.
This study investigated the role of miR-143 in the chemoresistance of osteosarcoma tumor cells and the associated mechanisms. Real-time PCR was used to measure miR-143 levels. Western blot was used to detect protein expression. Cell proliferation was analyzed by MTT assay and Matrigel colony formation assay. Forced miR-143 expression was established by adenoviral vector infection. Cell death was detected by Hoechst33342 staining. Loss of miR-143 expression was observed in osteosarcomas, which correlated with shorter survival of patients with osteosarcomas underlying chemotherapy. In chemoresistant SAOS-2 and U2OS osteosarcomas cells, miR-143 levels were significantly downregulated and accompanied by increases in ATG2B, Bcl-2, and/or LC3-II protein levels, high rate of ALDH1+CD133+ cells, and an increase in Matrigel colony formation ability. H2O2 upregulated p53 and miR-143, but downregulated ATG2B, Bcl-2, and LC3-I expression in U2OS cells (wild-type p53) but not in SAOS-2 (p53-null) cells. Forced miR-143 expression significantly reversed chemoresistance as well as downregulation of ATG2B, LC3-I, and Bcl-2 expression in SAOS-2- and U2OS-resistant cells. Forced miR-143 expression significantly inhibited tumor growth in xenograft SAOS-2-Dox and U2OS-Dox animal models. Loss of miR-143 expression is associated with poor prognosis of patients with osteosarcoma underlying chemotherapy. The chemoresistance of osteosarcoma tumor cells to doxorubicin is associated with the downregulation of miR-143 expression, activation of ALDH1+CD133+ cells, activation of autophagy, and inhibition of cell death. miR-143 may play a crucial role in the chemoresistance of osterosarcoma tumors.  相似文献   

12.
13.
NRP1 as multifunctional non-tyrosine-kinase receptors play critical roles in tumor progression. MicroRNAs (miRNAs) are an important class of pervasive genes that are involved in a variety of biological functions, particularly cancer. It remains unclear whether miRNAs can regulate the expression of NRP1. The goal of this study was to identify miRNAs that could inhibit the growth, invasion and metastasis of gastric cancer by targeting NRP1 expression. We found that miR-338 expression was reduced in gastric cancer cell lines and in gastric cancer tissues. Moreover, we found that miR-338 inhibited gastric cancer cell migration, invasion, proliferation and promoted apoptosis by targeting NRP1 expression. As an upstream regulator of NRP1, miR-338 directly targets NRP1. The forced expression of miR-338 inhibited the phosphorylation of Erk1/2, P38 MAPK and Akt; however, the expression of phosphorylated Erk1/2, P38 MAPK and Akt was restored by the overexpression of NRP1. In AGS cells infected with miR-338 or transfected with SiNRP1, the protein levels of fibronectin, vimentin, N-cadherin and SNAIL were decreased, but the expression of E-cadherin was increased. The expression of mesenchymal markers in miR-338-expressing cells was restored to normal levels by the restoration of NRP1 expression. In vivo, miR-338 also decreased tumor growth and suppressed D-MVA by targeting NRP1. Therefore, we conclude that miR-338 acts as a novel tumor suppressor gene in gastric cancer. miR-338 can decrease migratory, invasive, proliferative and apoptotic behaviors, as well as gastric cancer EMT, by attenuating the expression of NRP1.  相似文献   

14.
The bioactive lysophospholipids lysophosphatidic acid (LPA) and sphingosine 1-phosphate (S1P) have diverse effects on the developing nervous system and neural progenitors, but the molecular basis for their pleiotropic effects is poorly understood. We previously defined LPA and S1P signaling in proliferating human neural progenitor (hNP) cells, and the current study investigates their role in neuronal differentiation of these cells. Differentiation in the presence of LPA or S1P significantly enhanced cell survival and decreased expression of neuronal markers. Further, the LPA receptor antagonist Ki16425 fully blocked the effects of LPA, and differentiation in the presence of Ki16425 dramatically enhanced neurite length. LPA and S1P robustly activated Erk, but surprisingly both strongly suppressed Akt activation. Ki16425 and pertussis toxin blocked LPA activation of Erk but not LPA inhibition of Akt, suggesting distinct receptor and G-protein subtypes mediate these effects. Finally, we explored cross talk between lysophospholipid signaling and the cytokine leukemia inhibitory factor (LIF). LPA/S1P effects on neuronal differentiation were amplified in the presence of LIF. Similarly, the ability of LPA/S1P to regulate Erk and Akt was impacted by the presence of LIF; LIF enhanced the inhibitory effect of LPA/S1P on Akt phosphorylation, while LIF blunted the activation of Erk by LPA/S1P. Taken together, our results suggest that LPA and S1P enhance survival and inhibit neuronal differentiation of hNP cells, and LPA1 is critical for the effect of LPA. The pleiotropic effects of LPA may reflect differences in receptor subtype expression or cross talk with LIF receptor signaling.  相似文献   

15.
Ornithine decarboxylase (ODC) is the first rate-limiting enzyme in polyamine biosynthesis, which is essential for cell survival. We hypothesized that the ODC/polyamine system is involved in ischemic preconditioning (IPC)-mediated cardioprotection through the activation of Erk1/2 and Akt and through the inhibition of the mitochondrial permeability transition (mPT). Isolated rat hearts were subjected to 40 min of ischemia either with or without IPC (3 cycles of 5-min global ischemia), and ODC protein expression, polyamine content, and Akt and Erk1/2 phosphorylation were evaluated after 30 min of reperfusion. IPC significantly upregulated the ODC/polyamine pathway, promoted Erk1/2 and Akt phosphorylation, and reduced the infarct size and heart dysfunction after reperfusion. An inhibitor of ODC, α-difluoromethylornithine (DFMO), abolished the IPC-induced cardioprotection. Moreover, the inhibition of the IPC-induced activation of Erk1/2 and Akt using PD98059 or wortmannin downregulated the ODC/polyamine system. In separate studies, the Ca2+ load required to open the mPT pore was significantly lower in DFMO-treated cardiac mitochondria than in mitochondria from IPC hearts. Furthermore, spermine or spermidine significantly inhibited the mPT induced by CaCl2. These results suggest that IPC upregulates the ODC/polyamine system and mediates preconditioning cardioprotection, which may depend on the phosphorylation/activation of Erk1/2 and Akt and on the inhibition of the mPT during reperfusion.  相似文献   

16.
17.
The plasmacytoma variant translocation 1 (PVT1)1 gene is a long non-coding RNA (lncRNA)2 that has been shown to be an oncogene in many cancers. Herein, the function and potential molecular mechanisms connecting PVT1 and miR-195-5p were elucidated in endometrial cancer cell lines. Quantitative real-time PCR and fluorescence in situ hybridization (FISH)3 demonstrated that PVT1 is up-regulated concomitant with miR-195-5p down-regulation in human endometrial carcinoma tissues. PVT1 knockdown inhibited cell proliferation, migration, and invasion while facilitating apoptosis of endometrial cancer cells. Moreover, restoration of miR-195-5p due to PVT1 knockdown exerted tumor-suppressive functions. We observed that PVT1 promotes malignant cell behavior by decreasing miR-195-5p expression. Binding of PVT1 and miR-195-5p was confirmed using luciferase assays. Furthermore, expression of miR-195-5p negatively correlates with PVT1 expression. At the molecular level, either PVT1 knockdown or miR-195-5p overexpression resulted in a decrease of acidic fibroblast growth factor receptor (FGFR1)4 and basic fibroblast growth factor (FGF2).5 FGFR1 and FGF2 are targets of miR-195-5p that play a critical role in endometrial carcinoma by activating PI3K/AKT and MAPK/Erk pathways. Remarkably, PVT1 knockdown combined with miR-195-5p overexpression led to tumor regression in vivo. Overall, these results depict a novel pathway mediated by PVT1 in endometrial carcinoma, which may have potential application for endometrial carcinoma therapy.  相似文献   

18.
The phosphatidylinositol 3-kinase (PI3K)/Akt pathway tightly regulates adipose cell differentiation. Here we show that loss of Akt1/PKBα in primary mouse embryo fibroblast (MEF) cells results in a defect of adipocyte differentiation. Adipocyte differentiation in vitro and ex vivo was restored in cells lacking both Akt1/PKBα and Akt2/PKBβ by ectopic expression of Akt1/PKBα but not Akt2/PKBβ. Akt1/PKBα was found to be the major regulator of phosphorylation and nuclear export of FoxO1, whose presence in the nucleus strongly attenuates adipocyte differentiation. Differentiation-induced cell division was significantly abrogated in Akt1/PKBα-deficient cells, but was restored after forced expression of Akt1/PKBα. Moreover, expression of p27Kip1, an inhibitor of the cell cycle, was down regulated in an Akt1/PKBα-specific manner during adipocyte differentiation. Based on these data, we suggest that the Akt1/PKBα isoform plays a major role in adipocyte differentiation by regulating FoxO1 and p27Kip1.  相似文献   

19.

Objective

Poor survival of mesenchymal stem cells (MSC) compromised the efficacy of stem cell therapy for ischemic diseases. The aim of this study is to investigate the role of PEP-1-CAT transduction in MSC survival and its effect on ischemia-induced angiogenesis.

Methods

MSC apoptosis was evaluated by DAPI staining and quantified by Annexin V and PI double staining and Flow Cytometry. Malondialdehyde (MDA) content, lactate dehydrogenase (LDH) release, and Superoxide Dismutase (SOD) activities were simultaneously measured. MSC mitochondrial membrane potential was analyzed with JC-1 staining. MSC survival in rat muscles with gender-mismatched transplantation of the MSC after lower limb ischemia was assessed by detecting SRY expression. MSC apoptosis in ischemic area was determined by TUNEL assay. The effect of PEP-1-CAT-transduced MSC on angiogenesis in vivo was determined in the lower limb ischemia model.

Results

PEP-1-CAT transduction decreased MSC apoptosis rate while down-regulating MDA content and blocking LDH release as compared to the treatment with H2O2 or CAT. However, SOD activity was up-regulated in PEP-1-CAT-transduced cells. Consistent with its effect on MSC apoptosis, PEP-1-CAT restored H2O2-attenuated mitochondrial membrane potential. Mechanistically, PEP-1-CAT blocked H2O2-induced down-regulation of PI3K/Akt activity, an essential signaling pathway regulating MSC apoptosis. In vivo, the viability of MSC implanted into ischemic area in lower limb ischemia rat model was increased by four-fold when transduced with PEP-1-CAT. Importantly, PEP-1-CAT-transduced MSC significantly enhanced ischemia-induced angiogenesis by up-regulating VEGF expression.

Conclusions

PEP-1-CAT-transduction was able to increase MSC viability by regulating PI3K/Akt activity, which stimulated ischemia-induced angiogenesis.  相似文献   

20.
The brain‐derived neurotrophic factor (BDNF) participates in the regulation of cortical neurons by influencing the release of glutamate. However, the specific mechanisms are unclear. Hence, we isolated and cultured the cortical neurons of Sprague Dawley rats. Specific inhibitors of TrkB, Src, PLC‐γ1, Akt, and MEK1/2 (i.e., K252a, PP2, U73122, LY294002, and PD98059, respectively) were used to treat cortical neurons and to detect the glutamate release from cortical neurons stimulated with BDNF. BDNF significantly increased glutamate release, and simultaneously enhanced phosphorylation levels of TrkB, Src, PLC‐γ, Akt, and Erk1/2. For BDNF‐stimulated cortical neurons, K252a inhibited glutamate release and inhibited the phosphorylation levels of TrkB, Src, PLC‐γ, Erk1/2, and Akt (P < 0.05). PP2 reduced the glutamate release from BDNF‐stimulated cortical neurons (P < 0.05) and inhibited the phosphorylation levels of TrkB and PLC‐γ1 (P < 0.05). However, PP2 had no effect on the phosphorylation levels of Erk1/2 or Akt (P > 0.05). U73122 inhibited the glutamate release from BDNF‐stimulated cortical neurons, but had no influence on the phosphorylation levels of TrkB, Src, Erk1/2, or Akt (P > 0.05). LY294002 and PD98059 did not affect the BDNF‐stimulated glutamate release and did not inhibit the phosphorylation levels of TrkB, Src, or PLC‐γ1. In summary, BDNF stimulated the glutamate release from cortical neurons via the TrkB/Src/PLC‐γ1 signaling pathway. J. Cell. Biochem. 114: 144–151, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号