首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Large-conductance voltage- and Ca2+-activated K+ (BKCa) channels play a fundamental role in cellular function by integrating information from their voltage and Ca2+ sensors to control membrane potential and Ca2+ homeostasis. The molecular mechanism of Ca2+-dependent regulation of BKCa channels is unknown, but likely relies on the operation of two cytosolic domains, regulator of K+ conductance (RCK)1 and RCK2. Using solution-based investigations, we demonstrate that the purified BKCa RCK1 domain adopts an α/β fold, binds Ca2+, and assembles into an octameric superstructure similar to prokaryotic RCK domains. Results from steady-state and time-resolved spectroscopy reveal Ca2+-induced conformational changes in physiologically relevant [Ca2+]. The neutralization of residues known to be involved in high-affinity Ca2+ sensing (D362 and D367) prevented Ca2+-induced structural transitions in RCK1 but did not abolish Ca2+ binding. We provide evidence that the RCK1 domain is a high-affinity Ca2+ sensor that transduces Ca2+ binding into structural rearrangements, likely representing elementary steps in the Ca2+-dependent activation of human BKCa channels.  相似文献   

2.
MthK is a Ca2+-gated K+ channel whose activity is inhibited by cytoplasmic H+. To determine possible mechanisms underlying the channel’s proton sensitivity and the relation between H+ inhibition and Ca2+-dependent gating, we recorded current through MthK channels incorporated into planar lipid bilayers. Each bilayer recording was obtained at up to six different [Ca2+] (ranging from nominally 0 to 30 mM) at a given [H+], in which the solutions bathing the cytoplasmic side of the channels were changed via a perfusion system to ensure complete solution exchanges. We observed a steep relation between [Ca2+] and open probability (Po), with a mean Hill coefficient (nH) of 9.9 ± 0.9. Neither the maximal Po (0.93 ± 0.005) nor nH changed significantly as a function of [H+] over pH ranging from 6.5 to 9.0. In addition, MthK channel activation in the nominal absence of Ca2+ was not H+ sensitive over pH ranging from 7.3 to 9.0. However, increasing [H+] raised the EC50 for Ca2+ activation by ∼4.7-fold per tenfold increase in [H+], displaying a linear relation between log(EC50) and log([H+]) (i.e., pH) over pH ranging from 6.5 to 9.0. Collectively, these results suggest that H+ binding does not directly modulate either the channel’s closed–open equilibrium or the allosteric coupling between Ca2+ binding and channel opening. We can account for the Ca2+ activation and proton sensitivity of MthK gating quantitatively by assuming that Ca2+ allosterically activates MthK, whereas H+ opposes activation by destabilizing the binding of Ca2+.  相似文献   

3.
Calcium-dependent gating of the large-conductance Ca2+-activated K+ (BKCa) channel is conferred by the large cytosolic carboxyl terminus containing two domains of the regulator of K+ conductance (RCK) and the high-affinity Ca2+-binding site (the Ca2+-bowl). In our previous study, we located the putative second RCK domain (RCK2) and demonstrated that it interacts directly with RCK1 via a hydrophobic “assembly interface”. In this study, we tested the structural model of the other interface, the “flexible interface”, by strategically positioning charge pairs across the putative interface. Several charge mutations on RCK2 affected the voltage-dependent activation of the channel. In particular, the Gly-to-Asp substitution at position 803 profoundly affected channel activation by stabilizing the open conformation of the channel with minimal effects on its Ca2+ affinity and voltage sensitivity. Various mutations at Gly-803 shifted the channel's conductance-voltage curve either left or right over a 145-mV range. Since this residue is predicted to be in the first loop of RCK2 these results strongly suggest that this loop plays a critical role in determining the intrinsic equilibrium constant for channel opening, and they support the hypothesis that this loop is part of an interface that mediates conformational coupling between RCK1 and RCK2.  相似文献   

4.
Big or high conductance potassium (BK) channels are activated by voltage and intracellular calcium (Ca2+). Phosphatidylinositol 4,5-bisphosphate (PIP2), a ubiquitous modulator of ion channel activity, has been reported to enhance Ca2+-driven gating of BK channels, but a molecular understanding of this interplay or even of the PIP2 regulation of this channel''s activity remains elusive. Here, we identify structural determinants in the KDRDD loop (which follows the αA helix in the RCK1 domain) to be responsible for the coupling between Ca2+ and PIP2 in regulating BK channel activity. In the absence of Ca2+, RCK1 structural elements limit channel activation through a decrease in the channel''s PIP2 apparent affinity. This inhibitory influence of BK channel activation can be relieved by mutation of residues that (a) connect either the RCK1 Ca2+ coordination site (Asp367 or its flanking basic residues in the KDRDD loop) to the PIP2-interacting residues (Lys392 and Arg393) found in the αB helix or (b) are involved in hydrophobic interactions between the αA and αB helix of the RCK1 domain. In the presence of Ca2+, the RCK1-inhibitory influence of channel-PIP2 interactions and channel activity is relieved by Ca2+ engaging Asp367. Our results demonstrate that, along with Ca2+ and voltage, PIP2 is a third factor critical to the integral control of BK channel activity.  相似文献   

5.
BK channels are dually regulated by voltage and Ca2 +, providing a cellular mechanism to couple electrical and chemical signalling. Intracellular Ca2 + concentration is sensed by a large cytoplasmic region in the channel known as “gating ring”, which is formed by four tandems of regulator of conductance for K+ (RCK1 and RCK2) domains. The recent crystal structure of the full-length BK channel from Aplysia californica has provided new information about the residues involved in Ca2 + coordination at the high-affinity binding sites located in the RCK1 and RCK2 domains, as well as their cooperativity. Some of these residues have not been previously studied in the human BK channel. In this work we have investigated, through site directed mutagenesis and electrophysiology, the effects of these residues on channel activation by voltage and Ca2 +. Our results demonstrate that the side chains of two non-conserved residues proposed to coordinate Ca2 + in the A. californica structure (G523 and E591) have no apparent functional role in the human BK Ca2 + sensing mechanism. Consistent with the crystal structure, our data indicate that in the human channel the conserved residue R514 participates in Ca2 + coordination in the RCK1 binding site. Additionally, this study provides functional evidence indicating that R514 also interacts with residues E902 and Y904 connected to the Ca2 + binding site in RCK2. Interestingly, it has been proposed that this interaction may constitute a structural correlate underlying the cooperative interactions between the two high-affinity Ca2 + binding sites regulating the Ca2 + dependent gating of the BK channel. This article is part of a Special Issue entitled: Beyond the Structure-Function Horizon of Membrane Proteins edited by Ute Hellmich, Rupak Doshi and Benjamin McIlwain.  相似文献   

6.
Prevailing models postulate that high Ca2+ selectivity of Ca2+ release-activated Ca2+ (CRAC) channels arises from tight Ca2+ binding to a high affinity site within the pore, thereby blocking monovalent ion flux. Here, we examined the contribution of high affinity Ca2+ binding for Ca2+ selectivity in recombinant Orai3 channels, which function as highly Ca2+-selective channels when gated by the endoplasmic reticulum Ca2+ sensor STIM1 or as poorly Ca2+-selective channels when activated by the small molecule 2-aminoethoxydiphenyl borate (2-APB). Extracellular Ca2+ blocked Na+ currents in both gating modes with a similar inhibition constant (Ki; ∼25 µM). Thus, equilibrium binding as set by the Ki of Ca2+ blockade cannot explain the differing Ca2+ selectivity of the two gating modes. Unlike STIM1-gated channels, Ca2+ blockade in 2-APB–gated channels depended on the extracellular Na+ concentration and exhibited an anomalously steep voltage dependence, consistent with enhanced Na+ pore occupancy. Moreover, the second-order rate constants of Ca2+ blockade were eightfold faster in 2-APB–gated channels than in STIM1-gated channels. A four-barrier, three–binding site Eyring model indicated that lowering the entry and exit energy barriers for Ca2+ and Na+ to simulate the faster rate constants of 2-APB–gated channels qualitatively reproduces their low Ca2+ selectivity, suggesting that ion entry and exit rates strongly affect Ca2+ selectivity. Noise analysis indicated that the unitary Na+ conductance of 2-APB–gated channels is fourfold larger than that of STIM1-gated channels, but both modes of gating show a high open probability (Po; ∼0.7). The increase in current noise during channel activation was consistent with stepwise recruitment of closed channels to a high Po state in both cases, suggesting that the underlying gating mechanisms are operationally similar in the two gating modes. These results suggest that both high affinity Ca2+ binding and kinetic factors contribute to high Ca2+ selectivity in CRAC channels.  相似文献   

7.
The kinetic and steady-state properties of macroscopic mslo Ca-activated K+ currents were studied in excised patches from Xenopus oocytes. In response to voltage steps, the timecourse of both activation and deactivation, but for a brief delay in activation, could be approximated by a single exponential function over a wide range of voltages and internal Ca2+ concentrations ([Ca]i). Activation rates increased with voltage and with [Ca]i, and approached saturation at high [Ca]i. Deactivation rates generally decreased with [Ca]i and voltage, and approached saturation at high [Ca]i. Plots of the macroscopic conductance as a function of voltage (G-V) and the time constant of activation and deactivation shifted leftward along the voltage axis with increasing [Ca]i. G-V relations could be approximated by a Boltzmann function with an equivalent gating charge which ranged between 1.1 and 1.8 e as [Ca]i varied between 0.84 and 1,000 μM. Hill analysis indicates that at least three Ca2+ binding sites can contribute to channel activation. Three lines of evidence indicate that there is at least one voltage-dependent unimolecular conformational change associated with mslo gating that is separate from Ca2+ binding. (a) The position of the mslo G-V relation does not vary logarithmically with [Ca]i. (b) The macroscopic rate constant of activation approaches saturation at high [Ca]i but remains voltage dependent. (c) With strong depolarizations mslo currents can be nearly maximally activated without binding Ca2+. These results can be understood in terms of a channel which must undergo a central voltage-dependent rate limiting conformational change in order to move from closed to open, with rapid Ca2+ binding to both open and closed states modulating this central step.  相似文献   

8.
We studied the effects of H2O/D2O substitution on the permeation and gating of the large conductance Ca2+-activated K+ channels inChara gymnophylla droplet membrane using the patchclamp technique. The selectivity sequence of the channel was: K+>Rb+≫Li+, Na+, Cs+ and Cl. The conductance of this channel in symmetric 100mm KCl was found to be 130 pS. The single channel conductance was decreased by 15% in D2O as compared to H2O. The blockade of channel conductance by cytosolic Ca2+ weakened in D2O as a result of a decrease in zero voltage Ca2+ binding affinity by a factor of 1.4. Voltage-dependent channel gating was affected by D2O primarily due to the change in Ca2+ binding to the channel during the activation step. The Hill coefficient for Ca2+ binding was 3 in D2O and around 1 in H2O. The values of the Ca2+ binding constant in the open channel conformation were 0.6 and 6 μm in H2O and D2O, respectively, while the binding in the closed conformation was much less affected by D2O. The H2O/D2O substitution did not produce a significant change in the slope of channel voltage dependence but caused a shift as large as 60 mV with 1mm internal Ca2+.  相似文献   

9.
Rodent lens connexin46 (rCx46) formed active voltage-dependent hemichannels when expressed in Xenopus oocytes. Time-dependent macroscopic currents were evoked upon depolarization. The observed two activation time constants were weakly voltage-dependent and in the order of hundreds of milliseconds and seconds, respectively. Occasionally, the macroscopic steady-state current and the corresponding current-voltage curve showed inactivation at high depolarizing voltages (>+50 mV). To account for the fast recovery from inactivation (<2 msec) favored by hyperpolarization, a four-state kinetic model (C 1 closed C 2 closed O open I inactivated ) is proposed. In the absence of inactivation, the macroscopic conductance decreased and inactivation became visible at voltages positive of +50 mV when the rCx46-expressing oocytes were treated with the protein-kinase-C-activators OAG or TPA, high external concentrations of Ca2+ or H+. However, the underlying mechanisms of OAG, H+ or Ca2+ action were different. While OAG did not alter the voltage-dependent activation of the rCx46-hemichannels, an increase in the external Ca2+ or H+ level shifted the voltage threshold for activation to more positive voltages. In contrast to Ca2+, protons were not effective in the physiological concentration range. We propose that under physiological conditions only external Ca2+ and intracellular PKC-dependent processes regulate rCx46 in the lens. Received: 30 March 1999/Revised: 18 September 1999  相似文献   

10.
During the ascidian sperm reaction the single large cylindrical mitochondrion which lies next to the nucleus in the head swells, becomes spherical, and migrates along the tail to be lost when it reaches the end. This sequence is initiated by eggs, egg water, high pH, low Na+, or the ionophore X537A. Accompanying the sperm reaction induced by low Na+ are H+ efflux and Ca2+ influx in a ratio of near 100:1 as determined by 45Ca2+ and atomic absorption analysis. Simultaneous pH and Ca2+ electrode measurements suggest that the movement of H+ begins 10–13 sec before the movement of Ca2+. Ca2+ uptake can be inhibited by verapamil without affecting H+ efflux or the sperm reaction. Acid release and Ca2+ uptake are proportional to the initial pH of the medium when the reaction is triggered by high pH. Acid release initiated by low Na+ is proportional to Ca2+ concentrations above 2 mM. H+ and Ca2+ movements differ in magnitude, kinetics, and inhibition by verapamil, thus suggesting that H+ is probably not exchanged for Ca2+. Instead we propose that loss of H+ triggers the uptake of Ca2+, which initiates the sperm reaction.  相似文献   

11.
Lung lamellar bodies maintain an acidic interior by an energy-dependent process. The acidic pH may affect the packaging of surfactant phospholipids, processing of surfactant proteins, or surfactant protein A-dependent lipid aggregation. The electron-probe microanalysis of lamellar body elemental composition has previously suggested that lamellar bodies contain high levels of calcium some of which may be in ionic form. In this study, we investigated the Ca2+ uptake characteristics in isolated lung lamellar bodies. The uptake of Ca2+ was measured by monitoring changes in the fluorescence of Fluo-3, a Ca2+ indicator dye. The uptake of Ca2+ in lamellar bodies was ATP-dependent and increased with increasing concentrations of Ca2+. At 100 nm Ca2+, the uptake was almost completely inhibited by bafilomycin A1, a selective inhibitor of vacuolar type H+-ATPase, or by NH4Cl, which raises the lamellar body pH, suggesting that the pH gradient regulates the uptake. The uptake of Ca2+ increased as the Ca2+ concentration was increased, but the relative contribution of bafilomycin A1-sensitive uptake decreased. At 700 nm, it comprised only 20% of the total uptake. These results suggest the presence of additional mechanism(s) for uptake at higher Ca2+ concentrations. At 700 nm Ca2+, the rate and extent of uptake were lower in the absence of K+ than in the presence of K+. The inhibitors of Ca2+-activated K+-channels, tetraethylammonium, Penitrem A, and 4-aminopyridine, also inhibited the K+-dependent Ca2+ uptake at 700 nm Ca2+. Thus the uptake of Ca2+ in isolated lung lamellar bodies appears to be regulated by two mechanisms, (i) the H+-gradient and (ii) the K+ transport across the lamellar body membrane. We speculate that lamellar bodies accumulate Ca2+ and contribute to regulation of cytosolic Ca2+ in type II cells under resting and stimulated conditions. Received: 18 August 1999/Revised: 9 November 1999  相似文献   

12.
A rapid loss of accumulated Ca2+ is produced by addition of H+ to isolated heart mitochondria. The H+-dependent Ca+ efflux requires that either (a) the NAD(P)H pool of the mitochondrion be oxidized, or (b) the endogenous adenine nucleotides be depleted. The loss of Ca2+ is accompanied by swelling and loss of endogenous Mg2–. The rate of H+-dependent Ca2+ efflux depends on the amount of Ca2+ and Pi taken up and the extent of the pH drop imposed. In the absence of ruthenium red the H+-induced Ca2+-efflux is partially offset by a spontaneous re-accumulation of released Ca2+. The H+-induced Ca2+ efflux is inhibited when the Pi transporter is blocked withN-ethylmaleimide, is strongly opposed by oligomycin and exogenous adenine nucleotides (particularly ADP), and inhibited by nupercaine. The H+-dependent Ca2+ efflux is decreased markedly when Na+ replaces the K+ of the suspending medium or when the exogenous K+/H+ exchanger nigericin is present. These results suggest that the H+-dependent loss of accumulated Ca2+ results from relatively nonspecific changes in membrane permeability and is not a reflection of a Ca2+/H+ exchange reaction.  相似文献   

13.
Slo channels are large conductance K+ channels that display marked differences in their gating by intracellular ions. Among them, the Slo1 and C. elegans SLO-2 channels are gated by calcium (Ca2+), while mammalian Slo2 channels are activated by both sodium (Na+) and chloride (Cl). Here, we report that SLO-2 channels, SLO-2a and a novel N-terminal variant isoform, SLO-2b, are activated by Ca2+ and voltage, but in contrast to previous reports they do not exhibit Cl sensitivity. Most importantly, SLO-2 provides a unique case in the Slo family for sensing Ca2+ with the high-affinity Ca2+ regulatory site in the RCK1 but not the RCK2 domain, formed through interactions with residues E319 and E487 (that correspond to D362 and E535 of Slo1, respectively). The SLO-2 RCK2 domain lacks the Ca2+ bowl structure and shows minimal Ca2+ dependence. In addition, in contrast to SLO-1, SLO-2 loss-of-function mutants confer resistance to hypoxia in C. elegans. Thus, the C. elegans SLO-2 channels possess unique biophysical and functional properties.  相似文献   

14.
Paramecium Na+ channels, which were Ca2+-calmodulin activated, were studied in the inside-out mode of patch clamp. After excision of the membrane patch, they were active in the presence of 10–5 to 10–3 m Ca2+ in the bath. They became much less active in the presence of 10–6 m Ca2+, and their activity subsided completely at 10–8 m Ca2+. A Hill plot showed a dissociation constant of 6 m for Ca2+ binding. This dissociation constant shifted to a submicromolar range in the presence of 1 mm Mg2+. The channels also exhibited a mild voltage dependence. When exposed to 10–8 m Ca2+ for an extended period of 2–4 min, channels were further inactivated even after bath Ca2+ was restored to 10–4 m. Whereas neither high voltage (+100 mV) nor high Ca2+ (10–3 m) was effective in reactivation of the inactive channels, addition of Paramecium wild-type calmodulin together with high Ca2+ to the bath restored channel activity without a requirement of additional Mg2+ and metabolites such as ATP. The channels reactivated by calmodulin had the same ion conductance, ion selectivity and Ca2+ sensitivity as those prior to inactivation. These inactivation and reactivation of the channels could be repeated, indicating that the direct calmodulin effect on the Na+ channel was reversible. Thus, calmodulin is a physiological factor critically required for Na+ channel activation, and is the Ca2+ sensor of the Na+-channel gating machinery.We thank C. Kung for his kind support, and A. Boileau for critical reading. Supported by grants from National Institutes of Health GM 22714-20 and 36386-09.  相似文献   

15.
Summary 1. The ability of various divalent metal ions to substitute for Ca2+ in activating distinct types of Ca2+-dependent K+ [K+(Ca2+] channels has been investigated in excised, inside-out membrane patches of human erthrocytes and of clonal N1E-115 mouse neuroblastoma cells using the patch clamp technique. The effects of the various metal ions have been compared and related to the effects of Ca2+.2. At concentrations between 1 and 100 µM Pb2+, Cd2+ and Co2+ activate intermediate conductance K+(Ca2+) channels in erythrocytes and large conductance K+(Ca2+) channels in neuroblastoma cells. Pb2+ and Co2+, but not Cd2+, activate small conductance K+(Ca2+) channels in neuroblastoma cells. Mg2+ and Fe2+ do not activate any of the K+(Ca2+) channels.3. Rank orders of the potencies for K+(Ca2+) activation are Pb2+, Cd2+>Ca2+, Co2+>>Mg2+, Fe2+ for the intermediate erythrocyte K+(Ca2+) channel, and Pb2+, Cd2+>Ca2+>Co2+>>Mg2+, Fe2+ for the small, and Pb2+>Ca2+>Co2+>>Cd2+, Mg2+, Fe2+ for the large K+(Ca2+) channel in neuroblastoma cells.4. At high concentrations Pb2+, Cd2+, and Co2+ block K+(Ca2+) channels in erythrocytes by reducing the opening frequency of the channels and by reducing the single channel amplitude. The potency orders of the two blocking effects are Pb2+>Cd2+, Co2+>>Ca2+, and Cd2+>Pb2+, Co2+>>Ca2+, respectively, and are distinct from the potency orders for activation.5. It is concluded that the different subtypes of K+(Ca2+) channels contain distinct regulatory sites involved in metal ion binding and channel opening. The K+(Ca2+) channel in erythrocytes appears to contain additional metal ion interaction sites involved in channel block.  相似文献   

16.
The Ca2+ transport ATPase (SERCA) of sarcoplasmic reticulum (SR) plays an important role in muscle cytosolic signaling, as it stores Ca2+ in intracellular membrane bound compartments, thereby lowering cytosolic Ca2+ to induce relaxation. The stored Ca2+ is in turn released upon membrane excitation to trigger muscle contraction. SERCA is activated by high affinity binding of cytosolic Ca2+, whereupon ATP is utilized by formation of a phosphoenzyme intermediate, which undergoes protein conformational transitions yielding reduced affinity and vectorial translocation of bound Ca2+. We review here biochemical and biophysical evidence demonstrating that release of bound Ca2+ into the lumen of SR requires Ca2+/H+ exchange at the low affinity Ca2+ sites. Rise of lumenal Ca2+ above its dissociation constant from low affinity sites, or reduction of the H+ concentration by high pH, prevent Ca2+/H+ exchange. Under these conditions Ca2+ release into the lumen of SR is bypassed, and hydrolytic cleavage of phosphoenzyme may yield uncoupled ATPase cycles. We clarify how such Ca2+pump slippage does not occur within the time length of muscle twitches, but under special conditions and in special cells may contribute to thermogenesis.  相似文献   

17.
《Cell calcium》2015,58(5-6):348-365
High environmental salt elicits an increase in cytosolic Ca2+ ([Ca2+]cyt) in plants, which is generated by extracellular Ca2+ influx and Ca2+ release from intracellular stores, such as vacuole and endoplasmic reticulum. This study aimed to determine the physiological mechanisms underlying Ca2+ release from vacuoles and its role in ionic homeostasis in Populus euphratica. In vivo Ca2+ imaging showed that NaCl treatment induced a rapid elevation in [Ca2+]cyt, which was accompanied by a subsequent release of vacuolar Ca2+. In cell cultures, NaCl-altered intracellular Ca2+ mobilization was abolished by antagonists of inositol (1, 4, 5) trisphosphate (IP3) and cyclic adenosine diphosphate ribose (cADPR) signaling pathways, but not by slow vacuolar (SV) channel blockers. Furthermore, the NaCl-induced vacuolar Ca2+ release was dependent on extracellular ATP, extracellular Ca2+ influx, H2O2, and NO. In vitro Ca2+ flux recordings confirmed that IP3, cADPR, and Ca2+ induced substantial Ca2+ efflux from intact vacuoles, but this vacuolar Ca2+ flux did not directly respond to ATP, H2O2, or NO. Moreover, the IP3/cADPR-mediated vacuolar Ca2+ release enhanced the expression of salt-responsive genes that regulated a wide range of cellular processes required for ion homeostasis, including cytosolic K+ maintenance, Na+ and Cl exclusion across the plasma membrane, and Na+/H+ and Cl/H+ exchanges across the vacuolar membrane.  相似文献   

18.
19.
Summary The patch-clamp technique is used here to investigate the kinetics of Ca2+ block in single high-conductance Ca2+-activated K+ channels. These channels are detected in the membrane surounding cytoplasmic drops fromChara australis, a membrane which originates from the tonoplast of the parent cell. The amplitudes and durations of single channel events are measured over a wide range of membrane potential (–300 to 200 mV). Ca2+ on either side of the channel reduces its K+ conductance and alters its ion-gating characteristics in a voltage-dependent manner. This Ca2+-induced attenuation of conductance is analyzed using the theory of diffusion-limited ion flow through pores. Interaction of external Ca2+ with the channel's ion-gating mechanism is examined in terms of a kinetic model for ion-gating that includes two voltage-dependent gating mechanisms. The kinetics of channel block by external Ca2+ indicates that (i) external Ca2+ binds at two sites, a superficial site and a deep site, located at 8 and 40% along the trans-pore potential difference, (ii) the external vestibule cannot be occupied by more than one Ca2+ or K+, and (iii) the kinetics of Ca2+ binding at the deep site is coupled with that of a voltage-dependent gate on the external side of the channel. Kinetics of channel block by internal Ca2+ indicates that more than one Ca2+ is involved.  相似文献   

20.
Lu T  Ye D  He T  Wang XL  Wang HL  Lee HC 《Biophysical journal》2008,95(11):5165-5177
The large-conductance Ca2+-activated K+ (BK) channels play an important role in the regulation of cellular excitability in response to changes in intracellular metabolic state and Ca2+ homeostasis. In vascular smooth muscle, BK channels are key determinants of vasoreactivity and vital-organ perfusion. Vascular BK channel functions are impaired in diabetes mellitus, but the mechanisms underlying such changes have not been examined in detail. We examined and compared the activities and kinetics of BK channels in coronary arterial smooth muscle cells from Lean control and Zucker Diabetic Fatty (ZDF) rats, using single-channel recording techniques. We found that BK channels in ZDF rats have impaired Ca2+ sensitivity, including an increased free Ca2+ concentration at half-maximal effect on channel activation, a reduced steepness of Ca2+ dose-dependent curve, altered Ca2+-dependent gating properties with decreased maximal open probability, and a shortened mean open-time and prolonged mean closed-time durations. In addition, the BK channel β-subunit-mediated activation by dehydrosoyasaponin-1 (DHS-1) was lost in cells from ZDF rats. Immunoblotting analysis confirmed a 2.1-fold decrease in BK channel β1-subunit expression in ZDF rats, compared with that of Lean rats. These abnormalities in BK channel gating lead to an increase in the energy barrier for channel activation, and may contribute to the development of vascular dysfunction and complications in type 2 diabetes mellitus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号