共查询到20条相似文献,搜索用时 15 毫秒
1.
The RING domain E3 ubiquitin ligase Mdm2 is the master regulator of the tumor suppressor p53. It targets p53 for proteasomal degradation, restraining the potent activity of p53 and enabling cell survival and proliferation. Like most E3 ligases, Mdm2 can also ubiquitinate itself. How Mdm2 auto-ubiquitination may influence its substrate ubiquitin ligase activity is undefined. Here we show that auto-ubiquitination of Mdm2 is an activating event. Mdm2 that has been conjugated to polyubiquitin chains, but not to single ubiquitins, exhibits substantially enhanced activity to polyubiquitinate p53. Mechanistically, auto-ubiquitination of Mdm2 facilitates the recruitment of the E2 ubiquitin-conjugating enzyme. This occurs through noncovalent interactions between the ubiquitin chains on Mdm2 and the ubiquitin binding domain on E2s. Mutations that diminish the noncovalent interactions render auto-ubiquitination unable to stimulate Mdm2 substrate E3 activity. These results suggest a model in which polyubiquitin chains on an E3 increase the local concentration of E2 enzymes and permit the processivity of substrate ubiquitination. They also support the notion that autocatalysis may be a prevalent mode for turning on the activity of latent enzymes. 相似文献
2.
Mdm2 and Mdmx are oncoproteins that have essential yet nonredundant roles in development and function as part of a multicomponent ubiquitinating complex that targets p53 for proteasomal degradation. However, in response to DNA damage, Mdm2 and Mdmx are phosphorylated and protect p53 through various mechanisms. It has been predicted that Mdm2-Mdmx complex formation modulates Mdm2 ligase activity, yet the mechanism that promotes formation of Mdm2-Mdmx complexes is unknown. Here, we show that optimal Mdm2-Mdmx complex formation requires c-Abl phosphorylation of Mdm2 both in vitro and in vivo. In addition, Abl phosphorylation of Mdm2 is required for efficient ubiquitination of Mdmx in vitro, and eliminating c-Abl signaling, using c-Abl(-/-) knock-out murine embryonic fibroblasts, led to a decrease in Mdmx ubiquitination. Further, p53 levels are not induced as efficiently in c-Abl(-/-) murine embryonic fibroblasts following DNA damage. Overall, these results define a direct link between genotoxic stress-activated c-Abl kinase signaling and Mdm2-Mdmx complex formation. Our results add an important regulatory mechanism for the activation of p53 in response to DNA damage. 相似文献
3.
4.
Terzian T Wang Y Van Pelt CS Box NF Travis EL Lozano G 《Molecular and cellular biology》2007,27(15):5479-5485
The tumor suppressor p53 is inactivated by multiple mechanisms that include mutations of the p53 gene itself and increased levels of the p53 inhibitors MDM2 and MDM4. Mice lacking Mdm2 or Mdm4 exhibit embryo-lethal phenotypes that are completely rescued by concomitant deletion of p53. Here we show that Mdm2 and Mdm4 haploinsufficiency leads to increased p53 activity, exhibited as increased sensitivity to DNA damage and decreased transformation potential. Moreover, in in vivo tumor development, Emu-myc Mdm4+/- mice show a delayed onset of B-cell lymphomas compared to Emu-myc mice. Additionally, Mdm2+/- Mdm4+/- double-heterozygous mice are not viable and exhibit defects in hematopoiesis and cerebellar development. The defects in Mdm2+/- Mdm4+/- mice are corrected by deletion of a single p53 allele. These findings highlight the exquisite sensitivity of p53 to Mdm2 and Mdm4 levels and suggest that some cell types may be more sensitive to therapeutic drugs that inhibit the Mdm-p53 interaction. 相似文献
5.
Mdm2 and Mdm4 loss regulates distinct p53 activities 总被引:1,自引:0,他引:1
Barboza JA Iwakuma T Terzian T El-Naggar AK Lozano G 《Molecular cancer research : MCR》2008,6(6):947-954
Mutational inactivation of p53 is a hallmark of most human tumors. Loss of p53 function also occurs by overexpression of negative regulators such as MDM2 and MDM4. Deletion of Mdm2 or Mdm4 in mice results in p53-dependent embryo lethality due to constitutive p53 activity. However, Mdm2(-/-) and Mdm4(-/-) embryos display divergent phenotypes, suggesting that Mdm2 and Mdm4 exert distinct control over p53. To explore the interaction between Mdm2 and Mdm4 in p53 regulation, we first generated mice and cells that are triple null for p53, Mdm2, and Mdm4. These mice had identical survival curves and tumor spectrum as p53(-/-) mice, substantiating the principal role of Mdm2 and Mdm4 as negative p53 regulators. We next generated mouse embryo fibroblasts null for p53 with deletions of Mdm2, Mdm4, or both; introduced a retrovirus expressing a temperature-sensitive p53 mutant, p53A135V; and examined p53 stability and activity. In this system, p53 activated distinct target genes, leading to apoptosis in cells lacking Mdm2 and a cell cycle arrest in cells lacking Mdm4. Cells lacking both Mdm2 and Mdm4 had a stable p53 that initiated apoptosis similar to Mdm2-null cells. Additionally, stabilization of p53 in cells lacking Mdm4 with the Mdm2 antagonist nutlin-3 was sufficient to induce a cell death response. These data further differentiate the roles of Mdm2 and Mdm4 in the regulation of p53 activities. 相似文献
6.
Poyurovsky MV Jacq X Ma C Karni-Schmidt O Parker PJ Chalfie M Manley JL Prives C 《Molecular cell》2003,12(4):875-887
The RING domain of Mdm2 contains a conserved Walker A or P loop motif that is a characteristic of nucleotide binding proteins. We found that Mdm2 binds adenine-containing nucleotides preferentially and that nucleotide binding leads to a conformational change in the Mdm2 C terminus. Although nucleotide binding is not required for Mdm2 E3 ubiquitin ligase activity, we show that nucleotide binding-defective P loop mutants are impaired in p14(ARF)-independent nucleolar localization both in vivo and in vitro. Consistent with this, ATP-bound Mdm2 is preferentially localized to the nucleolus. Indeed, we identify a unique amino acid substitution in the P loop motif (K454A) that uncouples nucleolar localization and E3 ubiquitin ligase activity of Mdm2 and leads to upregulation of the E3 activity both in human cells and in Caenorhabditis elegans. We propose that nucleotide binding-facilitated nucleolar localization of Mdm2 is an evolutionarily conserved regulator of Mdm2 activity. 相似文献
7.
Grier JD Xiong S Elizondo-Fraire AC Parant JM Lozano G 《Molecular and cellular biology》2006,26(1):192-198
The function of the p53 tumor suppressor to inhibit proliferation or initiate apoptosis is often abrogated in tumor cells. Mdm2 and its homolog, Mdm4, are critical inhibitors of p53 that are often overexpressed in human tumors. In mice, loss of Mdm2 or Mdm4 leads to embryonic lethal phenotypes that are completely rescued by concomitant loss of p53. To examine the role of Mdm2 and Mdm4 in a temporal and tissue-specific manner and to determine the relationships of these inhibitors to each other, we generated conditional alleles. We deleted Mdm2 and Mdm4 in cardiomyocytes, since proliferation and apoptosis are important processes in heart development. Mice lacking Mdm2 in the heart were embryonic lethal and showed defects at the time recombination occurred. A critical number of cardiomyocytes were lost by embryonic day 13.5, resulting in heart failure. This phenotype was completely rescued by deletion of p53. Mice lacking Mdm4 in the heart were born at the correct ratio and appeared to be normal. Our studies provide the first direct evidence that Mdm2 can function in the absence of Mdm4 to regulate p53 activity in a tissue-specific manner. Moreover, Mdm4 cannot compensate for the loss of Mdm2 in heart development. 相似文献
8.
Pavlina Dolezelova Katerina Cetkovska Karen H Vousden Stjepan Uldrijan 《Cell cycle (Georgetown, Tex.)》2012,11(5):953-962
Mdm2 can mediate p53 ubiquitylation and degradation either in the form of the Mdm2 homodimer or Mdm2/MdmX heterodimer. The ubiquitin ligase activity of these complexes resides mainly in their respective RING finger domains and also requires adjacent C-terminal tails. So far, structural studies have failed to show significant differences between Mdm2 RING homodimers and Mdm2/MdmX RING heterodimers. Here, we report that not only the primary amino acid sequence, but also the length of the C-terminal tail of Mdm2 is highly conserved through evolution and plays an important role in Mdm2 activity toward p53. Mdm2 mutants with extended C termini do not ubiquitylate p53 despite being capable of forming Mdm2 homodimers through both RING-acidic domain and RING-RING interactions. All extended mutants also retained the ability to interact with MdmX, and this interaction led to reactivation of their E3 ubiquitin ligase activity. In contrast, only a subset of extended Mdm2 mutants was activated by the interaction with Mdm2 RING domain, suggesting that Mdm2 homodimers and Mdm2/MdmX heterodimers may not be structurally and functionally fully equivalent.Key words: p53, Mdm2, RING domain, ubiquitylation, ubiquitin ligase, E3 相似文献
9.
The p53 pathway is pivotal in tumor suppression. Cellular p53 activity is subject to tight regulation, in which the two related proteins Mdm2 and Mdm4 have major roles. The delicate interplay between the levels of Mdm2, Mdm4 and p53 is crucial for maintaining proper cellular homeostasis. microRNAs (miRNAs) are short non-coding RNAs that downregulate the level and translatability of specific target mRNAs. We report that miR-661, a primate-specific miRNA, can target both Mdm2 and Mdm4 mRNA in a cell type-dependent manner. miR-661 interacts with Mdm2 and Mdm4 RNA within living cells. The inhibitory effect of miR-661 is more prevalent on Mdm2 than on Mdm4. Interestingly, the predicted miR-661 targets in both mRNAs reside mainly within Alu elements, suggesting a primate-specific mechanism for regulatory diversification during evolution. Downregulation of Mdm2 and Mdm4 by miR-661 augments p53 activity and inhibits cell cycle progression in p53-proficient cells. Correspondingly, low miR-661 expression correlates with bad outcome in breast cancers that typically express wild-type p53. In contrast, the miR-661 locus tends to be amplified in tumors harboring p53 mutations, and miR-661 promotes migration of cells derived from such tumors. Thus, miR-661 may either suppress or promote cancer aggressiveness, depending on p53 status. 相似文献
10.
《Cell cycle (Georgetown, Tex.)》2013,12(5):953-962
Mdm2 can mediate p53 ubiquitylation and degradation either in the form of the Mdm2 homodimer or Mdm2/MdmX heterodimer. The ubiquitin ligase activity of these complexes resides mainly in their respective RING finger domains and also requires adjacent C-terminal tails. So far, structural studies have failed to show significant differences between Mdm2 RING homodimers and Mdm2/MdmX RING heterodimers. Here, we report that not only the primary amino acid sequence, but also the length of the C-terminal tail of Mdm2 is highly conserved through evolution and plays an important role in Mdm2 activity toward p53. Mdm2 mutants with extended C termini do not ubiquitylate p53 despite being capable of forming Mdm2 homodimers through both RING-acidic domain and RING-RING interactions. All extended mutants also retained the ability to interact with MdmX, and this interaction led to reactivation of their E3 ubiquitin ligase activity. In contrast, only a subset of extended Mdm2 mutants was activated by the interaction with Mdm2 RING domain, suggesting that Mdm2 homodimers and Mdm2/MdmX heterodimers may not be structurally and functionally fully equivalent. 相似文献
11.
Mdm2 is a crucial negative regulator of the tumor suppressor function of p53. However, little is known about Mdm2 protein stability regulation by other tumor suppressors. Nuclear receptor small heterodimer partner (SHP, NROB2) functions as a tumor suppressor in liver cancer. We show here a surprising finding of a feedback regulatory loop between SHP and Mdm2. SHP stabilizes Mdm2 protein by abrogating Mdm2 self-ubiquitination, and Mdm2 in turn attenuates SHP protein levels under p53-deficient conditions. Such cross-regulation critically depends on the physical interaction of SHP with Mdm2 through the SHP K170 residue. The Mdm2-SHP interplay represents a novel component of Mdm2 signaling that is likely to dictate Mdm2 activity and function. 相似文献
12.
H. R. Ashar K. F. Benson N. A. Jenkins D. J. Gilbert N. G. Copeland K. K. Chada 《Mammalian genome》1994,5(10):608-611
Various genes that mapped to the distal end of Chromosome (Chr) 10 were considered as possible candidates for the mouse pygmy (pg) locus. Probes derived from Ifg, Gli, Mdm1, Mdm2 and Mdm3 (Mdm2 and Mdm3 are genes that are coamplified with Mdm1 on the same double minute chromosomes in 3T3DM cells) were used for Southern analysis of DNA from wild-type mice and various pg mutants. In addition, the chromosomal locations of Ifg, Gli, Mdm1, Mdm2, and Mdm3 were determined by interspecific backcross analysis with progeny derived from matings of [(C57BL/6J x Mus spretus)F1 x C57BL/6J] mice. The mapping data indicate that the Mdm loci are linked to each other and to Ifg, pg, and Gli in the distal region of mouse Chr 10. Both the mapping data and the Southern analysis confirm that mdm1, Mdm2, Mdm3, Ifg, and Gli are distinct from pg. 相似文献
13.
《Cell cycle (Georgetown, Tex.)》2013,12(3):582-593
Successful viral replication entails elimination or bypass of host antiviral mechanisms. Here, we show that shRNA-mediated knockdown of murine double minute (Mdm2) and its paralog Mdm4 enhanced the expression of early and late viral gene products during adenovirus (HAdV) infection. Remarkably, whereas the expression of HAdV genes was low in p53-deficient mouse embryonic fibroblasts (p53KO MEFs), the HAdV early gene products were efficiently expressed in Mdm2/p53 double-knockout (DKO) and Mdm4/p53 DKO MEFs, and viral capsid proteins were produced in Mdm2/p53 DKO MEFs. Thus, Mdm2 and Mdm4 seem to have potent antiviral property. In cells infected with wt HAdV or a mutant virus lacking the E1B-55K gene (dl1520), both Mdm2 and Mdm4 were rapidly depleted, whereas replication-deficient mutant viruses (Ad-GFP) or ΔpTP with deletions within the coding sequence of preterminal binding protein failed to induce their downregulation. Reduced expression of Mdm2 and Mdm4 was not due to general shutoff of host protein synthesis. Additionally, expression of a dominant-negative mutant of Cul5 did not affect Mdm2/Mdm4 downregulation. Thus, viral replication but not the presence of E1B-55K is required for Mdm2/Mdm4 degradation. Surprisingly, treatment of HAdV-infected cells with proteasome inhibitor MG132 only partially restored the protein levels of Mdm2 and Mdm4, suggesting that they may also be downregulated through an additional mechanism independent of proteasome. Interestingly, cyclin D1 and p21 appear to be downregulated similarly during HAdV infection. Collectively, our work provides the first biochemical evidence for antiviral function of Mdm2 and Mdm4 and that viruses employ efficient countermeasure to ensure viral replication. 相似文献
14.
Heng Yang Zhi Zheng Lisa Y Zhao Qiang Li Daiqing Liao 《Cell cycle (Georgetown, Tex.)》2012,11(3):582-593
Successful viral replication entails elimination or bypass of host antiviral mechanisms. Here, we show that shRNA-mediated knockdown of murine double minute (Mdm2) and its paralog Mdm4 enhanced the expression of early and late viral gene products during adenovirus (HAdV) infection. Remarkably, whereas the expression of HAdV genes was low in p53-deficient mouse embryonic fibroblasts (p53KO MEFs), the HAdV early gene products were efficiently expressed in Mdm2/p53 double-knockout (DKO) and Mdm4/p53 DKO MEFs, and viral capsid proteins were produced in Mdm2/p53 DKO MEFs. Thus, Mdm2 and Mdm4 seem to have potent antiviral property. In cells infected with wt HAdV or a mutant virus lacking the E1B-55K gene (dl1520), both Mdm2 and Mdm4 were rapidly depleted, whereas replication-deficient mutant viruses (Ad-GFP) or ΔpTP with deletions within the coding sequence of preterminal binding protein failed to induce their downregulation. Reduced expression of Mdm2 and Mdm4 was not due to general shutoff of host protein synthesis. Additionally, expression of a dominant-negative mutant of Cul5 did not affect Mdm2/Mdm4 downregulation. Thus, viral replication but not the presence of E1B-55K is required for Mdm2/Mdm4 degradation. Surprisingly, treatment of HAdV-infected cells with proteasome inhibitor MG132 only partially restored the protein levels of Mdm2 and Mdm4, suggesting that they may also be downregulated through an additional mechanism independent of proteasome. Interestingly, cyclin D1 and p21 appear to be downregulated similarly during HAdV infection. Collectively, our work provides the first biochemical evidence for antiviral function of Mdm2 and Mdm4 and that viruses employ efficient countermeasure to ensure viral replication.Key words: adenovirus (HAdV), antiviral mechanism, virus-host interaction, Mdm2, Mdm4, mouse embryonic fibroblast (MEF), DNA-damage response, cell cycle, p21, cyclin D1 相似文献
15.
Mdm2(murine double minute 2,又称为Hdm2)和Mdm X(murine double minute X,又称为Hdm4)的异常过表达与近半数的癌症直接相关,设计靶向Mdm2/Mdm X-p53蛋白质相互作用位点抑制剂,解除Mdm2和Mdm X对p53的抑制作用有着重要的临床意义。尽管Mdm2和MdmX结构非常相似,但仅有Mdm2小分子抑制剂的筛选和设计研究较深入。对依据nutlin分子构效关系、结构生物学、组合化学多重优化等手段筛设计MdmX抑制剂的研究进展进行简述,并讨论天然产物库在筛选Mdm X/Mdm2抑制剂新型结构框架的应用前景。 相似文献
16.
17.
18.
19.
20.
Mdm2 harnesses the p53 tumor suppressor, yet loss of one Mdm2 allele in Mdm2(+/-) mice has heretofore not been shown to impair tumor development. Here we report that Mdm2 haplo-insufficiency profoundly suppresses lymphomagenesis in E micro -myc transgenic mice. Mdm2(+/-)E micro -myc transgenics had greatly protracted rates of B cell lymphoma development with life spans twice that of wild-type transgenic littermates. Im paired lymphoma development was associated with drastic reductions in peripheral B cell numbers in Mdm2(+/-)E micro -myc transgenics, and primary pre-B cells from Mdm2(+/-)E micro -myc transgenics and Mdm2(+/-) littermates were extremely susceptible to spontaneous apoptosis. Loss of p53 rescued all of the effects of Mdm2 haplo-insufficiency, indicating they were p53 dependent. Furthermore, half of the lymphomas that ultimately emerged in Mdm2(+/-)E micro -myc transgenics harbored inactivating mutations in p53, and the majority overcame haplo-insufficiency by overexpressing Mdm2. These results support the concept that Mdm2 functions are rate limiting in lymphomagenesis and that targeting Mdm2 will enhance p53-mediated apoptosis, compromising tumor development and/or maintenance. 相似文献