首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Due to the abnormal vasculature of solid tumors, tumor cell oxygenation can change rapidly with the opening and closing of blood vessels, leading to the activation of both hypoxic response pathways and oxidative stress pathways upon reoxygenation. Here, we report that ataxia telangiectasia mutated-dependent phosphorylation and activation of Chk2 occur in the absence of DNA damage during hypoxia and are maintained during reoxygenation in response to DNA damage. Our studies involving oxidative damage show that Chk2 is required for G2 arrest. Following exposure to both hypoxia and reoxygenation, Chk2-/- cells exhibit an attenuated G2 arrest, increased apoptosis, reduced clonogenic survival, and deficient phosphorylation of downstream targets. These studies indicate that the combination of hypoxia and reoxygenation results in a G2 checkpoint response that is dependent on the tumor suppressor Chk2 and that this checkpoint response is essential for tumor cell adaptation to changes that result from the cycling nature of hypoxia and reoxygenation found in solid tumors.  相似文献   

2.
Severe hypoxia has been demonstrated to induce a replication arrest which is associated with decreased levels of nucleotides. Chk1 is rapidly phosphorylated in response to severe hypoxia and in turn deactivates TLK1 through phosphorylation. Loss of Chk1 has been shown to sensitize cells to hypoxia/reoxygenation. After short (acute) exposure to hypoxia this is due to an increased rate of reoxygenation-induced replication restart and subsequent p53-dependent apoptosis. After longer (chronic) exposure to hypoxia S phase cells do not undergo reoxygenation-induced replication restart. Cells exposed to these levels of hypoxia are however sensitive to loss of Chk1. This suggests a new role for Chk1 in the cell cycle response to reoxygenation.Key words: hypoxia, reoxygenation, replication restart, Chk1, TLK1  相似文献   

3.
Severe hypoxia has been demonstrated to induce a replication arrest which is associated with decreased levels of nucleotides. Chk1 is rapidly phosphorylated in response to severe hypoxia and in turn deactivates TLK1 through phosphorylation. Loss of Chk1 has been shown to sensitize cells to hypoxia/reoxygenation. After short (acute) exposure to hypoxia this is due to an increased rate of reoxygenation-induced replication restart and subsequent p53-dependent apoptosis. After longer (chronic) exposure to hypoxia S phase cells do not undergo reoxygenation-induced replication restart. Cells exposed to these levels of hypoxia however are sensitive to loss of Chk1. This suggests a new role for Chk1 in the cell cycle response to reoxygenation.  相似文献   

4.
Kim BM  Choi JY  Kim YJ  Woo HD  Chung HW 《FEBS letters》2007,581(16):3005-3012
Cellular responses to DNA damage after hypoxia and reoxygenation (H/R) were examined in human lymphocytes. Cultured lymphocytes exposed to H/R showed a lower cytokinesis block proliferation index and a higher frequency of micronuclei in comparison to control cells. Western blots showed that H/R exposure induced p53 expression; however, p21 and Bax expression did not increase, indicating that H/R did not affect p53 transactivational activity. Phosphorylation of p53 (Ser15), Chk1 (Ser345), and Chk2 (Thr68) was also observed, suggesting that H/R activates p53 through checkpoint signals. In addition, H/R exposure caused the phosphorylation and negative regulation of Cdc2 and Cdc25C, proteins that are involved in cell-cycle arrest at the G2/M checkpoint. The S-phase checkpoint, regulated by the ATM-p95/NBS1-SMC1 pathway, was also triggered in H/R-exposed lymphocytes. These results demonstrate that H/R exposure triggers checkpoint signaling and induces cell-cycle arrest in cultured human lymphocytes.  相似文献   

5.
The ATR kinase phosphorylates both p53 and Chk1 in response to extreme hypoxia (oxygen concentrations of less than 0.02%). In contrast to ATR, loss of ATM does not affect the phosphorylation of these or other targets in response to hypoxia. However, hypoxia within tumors is often transient and is inevitably followed by reoxygenation. We hypothesized that ATR activity is induced under hypoxic conditions because of growth arrest and ATM activity increases in response to the oxidative stress of reoxygenation. Using the comet assay to detect DNA damage, we find that reoxygenation induced significant amounts of DNA damage. Two ATR/ATM targets, p53 serine 15 and histone H2AX, were both phosphorylated in response to hypoxia in an ATR-dependent manner. These phosphorylations were then maintained in response to reoxygenation-induced DNA damage in an ATM-dependent manner. The reoxygenation-induced p53 serine 15 phosphorylation was inhibited by the addition of N-acetyl-l-cysteine (NAC), indicating that free radical-induced DNA damage was mediated by reactive oxygen species. Taken together these data implicate both ATR and ATM as critical roles in the response of hypoxia and reperfusion in solid tumors.  相似文献   

6.
In response to ionizing radiation (IR), the tumor suppressor p53 is stabilized and promotes either cell cycle arrest or apoptosis. Chk2 activated by IR contributes to this stabilization, possibly by direct phosphorylation. Like p53, Chk2 is mutated in patients with Li-Fraumeni syndrome. Since the ataxia telangiectasia mutated (ATM) gene is required for IR-induced activation of Chk2, it has been assumed that ATM and Chk2 act in a linear pathway leading to p53 activation. To clarify the role of Chk2 in tumorigenesis, we generated gene-targeted Chk2-deficient mice. Unlike ATM(-/-) and p53(-/-) mice, Chk2(-/-) mice do not spontaneously develop tumors, although Chk2 does suppress 7,12-dimethylbenzanthracene-induced skin tumors. Tissues from Chk2(-/-) mice, including those from the thymus, central nervous system, fibroblasts, epidermis, and hair follicles, show significant defects in IR-induced apoptosis or impaired G(1)/S arrest. Quantitative comparison of the G(1)/S checkpoint, apoptosis, and expression of p53 proteins in Chk2(-/-) versus ATM(-/-) thymocytes suggested that Chk2 can regulate p53-dependent apoptosis in an ATM-independent manner. IR-induced apoptosis was restored in Chk2(-/-) thymocytes by reintroduction of the wild-type Chk2 gene but not by a Chk2 gene in which the sites phosphorylated by ATM and ataxia telangiectasia and rad3(+) related (ATR) were mutated to alanine. ATR may thus selectively contribute to p53-mediated apoptosis. These data indicate that distinct pathways regulate the activation of p53 leading to cell cycle arrest or apoptosis.  相似文献   

7.
The ATM kinase has previously been shown to respond to the DNA damage induced by reoxygenation following hypoxia by initiating a Chk 2-dependent cell cycle arrest in the G(2) phase. Here we show that ATM is both phosphorylated and active during exposure to hypoxia in the absence of DNA damage, detectable by either comet assay or 53BP1 focus formation. Hypoxia-induced activation of ATM correlates with oxygen concentrations low enough to cause a replication arrest and is entirely independent of hypoxia-inducible factor 1 status. In contrast to damage-activated ATM, hypoxia-activated ATM does not form nuclear foci but is instead diffuse throughout the nucleus. The hypoxia-induced activity of both ATM and the related kinase ATR is independent of NBS1 and MRE11, indicating that the MRN complex does not mediate the DNA damage response to hypoxia. However, the mediator MDC1 is required for efficient activation of Kap1 by hypoxia-induced ATM, indicating that similarly to the DNA damage response, there is a requirement for MDC1 to amplify the ATM response to hypoxia. However, under hypoxic conditions, MDC1 does not recruit BRCA1/53BP1 or RNF8 activity. Our findings clearly demonstrate that there are alternate mechanisms for activating ATM that are both stress-specific and independent of the presence of DNA breaks.  相似文献   

8.
Wang WZ  Cheng J  Luo J  Zhuang SM 《FEBS letters》2008,582(18):2689-2695
In this study, we showed that curcumin treatment resulted in activation of Chk1-mediated G2 checkpoint, which was associated with the induction of G2/M arrest and the resistance of cancer cells to curcumin-induced apoptosis. Further investigation revealed that inhibition of Chk1 significantly abrogated G2/M arrest and sensitized curcumin-resistant cells to apoptosis via upregulation of Bad and in turn the loss of mitochondrial membrane potential. These results indicate that Chk1-mediated G2/M arrest may serve as a mechanism for curcumin resistance and Chk1 represents a potential target for the reversal of this resistance. Our findings should be helpful for clinical application of curcumin.  相似文献   

9.
Budding yeast Mec1, encoded by the yeast ATR/ATM homolog, negatively regulates cell cycle progression by activating Rad53 (Chk2) and Chk1, two parallel downstream checkpoint pathways. Chk1 phosphorylates Pds1 (securin), which prevents Pds1 degradation. We determined whether activation of both downstream pathways is required to establish G2 arrest in response to double-strand breaks (DSBs). In a hypomorphic mec1 mutant, Rad53 activation was not required to establish G2 arrest triggered by a single HO endonuclease-generated DSB. However, Pds1 phosphorylation did correlate with G2 arrest and mec1-21 pds1 cells did not arrest in G2 after exposure to ionizing radiation. The G2 checkpoint genes, CHK1 and PDS1, did confer radiation resistance in mec1-21, indicating that CHK1-mediated pathway is functional in the mec1 hypomorph. Thus, phosphorylation of Pds1 but not Rad53 correlates with G2 arrest in response to DSBs in the mec1 hypomorphic mutant.  相似文献   

10.
We investigated the role of the cyclin-dependent kinase inhibitors p21(Cip1) and p27(Kip1) in cell cycle regulation during hypoxia and reoxygenation. While moderate hypoxia (1 or 0.1% oxygen) does not significantly impair bromodeoxyuridine incorporation, at very low oxygen tensions (0.01% oxygen) DNA replication is rapidly shut down in immortalized mouse embryo fibroblasts. This S-phase arrest is intact in fibroblasts lacking the cyclin kinase inhibitors p21(Cip1) and p27(Kip1), indicating that these molecules are not essential elements of the arrest pathway. Hypoxia-induced arrest is accompanied by dephosphorylation of pRb and inhibition of cyclin-dependent kinase 2, which results in part from inhibitory phosphorylation. Interestingly, cells lacking the retinoblastoma tumor suppressor protein also display arrest under hypoxia, suggesting that pRb is not an essential mediator of this response. Upon reoxygenation, DNA synthesis resumes by 3.5 h and reaches aerobic levels by 6 h. Cells lacking p21, however, resume DNA synthesis more rapidly upon reoxygenation than wild-type cells, suggesting that this inhibitor may play a role in preventing premature reentry into the cell cycle upon cessation of the hypoxic stress. While p27 null cells did not exhibit rapid reentry into the cell cycle, cells lacking both p21 and p27 entered S phase even more aggressively than those lacking p21 alone, revealing a possible secondary role for p27 in this response. Cdk2 activity is also restored more rapidly in the double-knockout cells when returned to normoxia. These studies reveal that restoration of DNA synthesis after hypoxic stress, but not the S phase arrest itself, is regulated by p21 and p27.  相似文献   

11.
Previously, we showed that sulforaphane (SFN), a naturally occurring cancer chemopreventive agent, effectively inhibits proliferation of PC-3 human prostate cancer cells by causing caspase-9- and caspase-8-mediated apoptosis. Here, we demonstrate that SFN treatment causes an irreversible arrest in the G(2)/M phase of the cell cycle. Cell cycle arrest induced by SFN was associated with a significant decrease in protein levels of cyclin B1, cell division cycle (Cdc) 25B, and Cdc25C, leading to accumulation of Tyr-15-phosphorylated (inactive) cyclin-dependent kinase 1. The SFN-induced decline in Cdc25C protein level was blocked in the presence of proteasome inhibitor lactacystin, but lactacystin did not confer protection against cell cycle arrest. Interestingly, SFN treatment also resulted in a rapid and sustained phosphorylation of Cdc25C at Ser-216, leading to its translocation from the nucleus to the cytoplasm because of increased binding with 14-3-3beta. Increased Ser-216 phosphorylation of Cdc25C upon treatment with SFN was the result of activation of checkpoint kinase 2 (Chk2), which was associated with Ser-1981 phosphorylation of ataxia telangiectasia-mutated, generation of reactive oxygen species, and Ser-139 phosphorylation of histone H2A.X, a sensitive marker for the presence of DNA double-strand breaks. Transient transfection of PC-3 cells with Chk2-specific small interfering RNA duplexes significantly attenuated SFN-induced G(2)/M arrest. HCT116 human colon cancer-derived Chk2(-/-) cells were significantly more resistant to G(2)/M arrest by SFN compared with the wild type HCT116 cells. These findings indicate that Chk2-mediated phosphorylation of Cdc25C plays a major role in irreversible G(2)/M arrest by SFN. Activation of Chk2 in response to DNA damage is well documented, but the present study is the first published report to link Chk2 activation to cell cycle arrest by an isothiocyanate.  相似文献   

12.
Carcinogen-induced S-phase arrest is Chk1 mediated and caffeine sensitive.   总被引:7,自引:0,他引:7  
We have investigated the mechanism of S-phase arrest elicited by the carcinogen benzo(a)pyrene dihydrodiol epoxide (BPDE) in p53-deficient cells. Inhibition of DNA synthesis after BPDE treatment was rapid and dose dependent (approximately 50% inhibition after 2 h with 50 nM BPDE). Cells treated with low doses (50-100 nM) of BPDE resumed DNA synthesis after a delay of approximately 4-8 h, whereas cells that received high doses of BPDE (600 nM) failed to recover from S-phase arrest. The checkpoint kinase Chk1 (but not Chk2) was phosphorylated after treatment with low doses of BPDE. High concentrations of BPDE elicited phosphorylation of both Chk1 and Chk2. Adenovirus-mediated expression of "dominant-negative" Chk1 (but not dominant-negative Chk2) and the Chk1 inhibitor UCN-01 abrogated the S-phase delay elicited by low doses of BPDE. Consistent with a role for the caffeine-sensitive ATM or ATR protein kinase in low-dose BPDE-induced S-phase arrest, both Chk1 phosphorylation and S-phase arrest were abrogated by caffeine. However, low doses of BPDE elicited Chk1 phosphorylation and S-phase arrest in AT cells (from ataxia telangiectasia patients), demonstrating that ATM is dispensable for S-phase checkpoint responses to this genotoxin. BPDE-induced Chk1 phosphorylation and S-phase arrest were abrogated by caffeine treatment in AT cells, suggesting that a caffeine-sensitive kinase other than ATM is an important mediator of responses to BPDE-adducted DNA. Overall, our data demonstrate the existence of a caffeine-sensitive, Chk1-mediated, S-phase checkpoint that is operational in response to BPDE.  相似文献   

13.
DNA damage and replication stress activate the Chk1 signaling pathway, which blocks S phase progression, stabilizes stalled replication forks, and participates in G2 arrest. In this study, we show that Chk1 interacts with Hsp90, a molecular chaperone that participates in the folding, assembly, maturation, and stabilization of specific proteins known as clients. Consistent with Chk1 being an Hsp90 client, we also found that Chk1 but not Chk2 is destabilized in cells treated with the Hsp90 inhibitor 17-allylamino-17-demethoxygeldanamycin (17-AAG). 17-AAG-mediated Chk1 loss blocked the ability of Chk1 to target Cdc25A for proteolytic destruction, demonstrating that the Chk1 signaling pathway was disrupted in the 17-AAG-treated cells. Finally, 17-AAG-mediated disruption of Chk1 activation dramatically sensitized various tumor cells to gemcitabine, an S phase-active chemotherapeutic agent. Collectively, our studies identify Chk1 as a novel Hsp90 client and suggest that pharmacologic inhibition of Hsp90 may sensitize tumor cells to chemotherapeutic agents by disrupting Chk1 function during replication stress.  相似文献   

14.
Human fibroblasts, capable of expressing a kinase-dead form of ATR (ATRkd), can be sensitized to the cytotoxic effects of methyl methanesulfonate (MMS) by the PARP inhibitor 4-amino-1,8-naphthalimide (4-AN). The combination of MMS+4-AN results in accumulation of cells in S-phase of the cell cycle and activation of Chk1. Inhibition of ATR activity by expression of ATRkd suppresses the S-phase accumulation and partially reverses the Chk1 phosphorylation. The results confirm involvement of an ATR-mediated damage response pathway in the MMS+4-AN-induced S-phase cell cycle checkpoint in human fibroblasts. Consistent with this hypothesis, the inhibitors caffeine and UCN-01 also abrogate the ATR- and Chk1-mediated delay in progression through S-phase. In the absence of ATR-mediated signaling, MMS+4-AN exposure results in a G(2)/M arrest, rather than an S-phase checkpoint. Thus, whereas ATR mediates the S-phase response, it is not critical for arrest of cells in G(2)/M.  相似文献   

15.
The oncogenic Wip1 phosphatase (PPM1D) is induced upon DNA damage in a p53-dependent manner and is required for inactivation or suppression of DNA damage-induced cell cycle checkpoint arrest and of apoptosis by dephosphorylating and inactivating phosphorylated Chk2, Chk1, and ATM kinases. It has been reported that arsenic trioxide (ATO), a potent cancer chemotherapeutic agent, in particular for acute promyelocytic leukemia, activates the Chk2/p53 pathway, leading to apoptosis. ATO is also known to activate the p38 MAPK/p53 pathway. Here we show that phosphatase activities of purified Wip1 toward phosphorylated Chk2 and p38 in vitro are inhibited by ATO in a dose-dependent manner. Furthermore, DNA damage-induced phosphorylation of Chk2 and p38 in cultured cells is suppressed by ectopic expression of Wip1, and this Wip1-mediated suppression can be restored by the presence of ATO. We also show that treatment of acute promyelocytic leukemia cells with ATO resulted in induction of phosphorylation and activation of Chk2 and p38 MAPK, which are required for ATO-induced apoptosis. Importantly, this ATO-induced activation of Chk2/p53 and p38 MAPK/p53 apoptotic pathways can be enhanced by siRNA-mediated suppression of Wip1 expression, further indicating that ATO inhibits Wip1 phosphatase in vivo. These results exemplify that Wip1 is a direct molecular target of ATO.  相似文献   

16.
Adeno-associated virus type 2 (AAV2) infection incites cells to arrest with 4N DNA content or die if the p53 pathway is defective. This arrest depends on AAV2 DNA, which is single stranded with inverted terminal repeats that serve as primers during viral DNA replication. Here, we show that AAV2 DNA triggers damage signaling that resembles the response to an aberrant cellular DNA replication fork. UV treatment of AAV2 enhances the G2 arrest by generating intrastrand DNA cross-links which persist in infected cells, disrupting viral DNA replication and maintaining the viral DNA in the single-stranded form. In cells, such DNA accumulates into nuclear foci with a signaling apparatus that involves DNA polymerase delta, ATR, TopBP1, RPA, and the Rad9/Rad1/Hus1 complex but not ATM or NBS1. Focus formation and damage signaling strictly depend on ATR and Chk1 functions. Activation of the Chk1 effector kinase leads to the virus-induced G2 arrest. AAV2 provides a novel way to study the cellular response to abnormal DNA replication without damaging cellular DNA. By using the AAV2 system, we show that in human cells activation of phosphorylation of Chk1 depends on TopBP1 and that it is a prerequisite for the appearance of DNA damage foci.  相似文献   

17.
Geminin is an unstable inhibitor of DNA replication that gets destroyed at the metaphase/anaphase transition. The biological function of geminin has been difficult to determine because it is not homologous to a characterized protein and has pleiotropic effects when overexpressed. Geminin is thought to prevent a second round of initiation during S or G2 phase. In some assays, geminin induces uncommitted embryonic cells to differentiate as neurons. In this study, geminin was eliminated from developing Xenopus embryos by using antisense techniques. Geminin-deficient embryos show a novel and unusual phenotype: they complete the early cleavage divisions normally but arrest in G2 phase immediately after the midblastula transition. The arrest requires Chk1, the effector kinase of the DNA replication/DNA damage checkpoint pathway. The results indicate that geminin has an essential function and that loss of this function prevents entry into mitosis by a Chk1-dependent mechanism. Geminin may be required to maintain the structural integrity of the genome or it may directly down-regulate Chk1 activity. The data also show that during the embryonic cell cycles, rereplication is almost entirely prevented by geminin-independent mechanisms.  相似文献   

18.
PNAS-4, a novel pro-apoptotic gene, was activated during the early response to DNA damage. Our previous study has shown that PNAS-4 induces S phase arrest and apoptosis when overexpressed in A549 lung cancer cells. However, the underlying action mechanism remains far from clear. In this work, we found that PNAS-4 expression in lung tumor tissues is significantly lower than that in adjacent lung tissues; its expression is significantly increased in A549 cells after exposure to cisplatin, methyl methane sulfonate, and mitomycin; and its overexpression induces S phase arrest and apoptosis in A549 (p53 WT), NCI-H460 (p53 WT), H526 (p53 mutation), and Calu-1 (p53−/−) lung cancer cells, leading to proliferation inhibition irrespective of their p53 status. The S phase arrest is associated with up-regulation of p21Waf1/Cip1 and inhibition of the Cdc25A-CDK2-cyclin E/A pathway. Up-regulation of p21Waf1/Cip1 is p53-independent and correlates with activation of ERK. We further showed that the intra-S phase checkpoint, which occurs via DNA-dependent protein kinase-mediated activation of Chk1 and Chk2, is involved in the S phase arrest and apoptosis. Gene silencing of Chk1/2 rescues, whereas that of ATM or ATR does not affect, S phase arrest and apoptosis. Furthermore, human PNAS-4 induces DNA breaks in comet assays and γ-H2AX staining. Intriguingly, caspase-dependent cleavage of Chk1 has an additional role in enhancing apoptosis. Taken together, our findings suggest a novel mechanism by which elevated PNAS-4 first causes DNA-dependent protein kinase-mediated Chk1/2 activation and then results in inhibition of the Cdc25A-CDK2-cyclin E/A pathway, ultimately causing S phase arrest and apoptosis in lung cancer cells.  相似文献   

19.
Our previous work and that of other investigators strongly suggest a relationship between the upregulation of metalloproteinase-9 (MMP-9) and urokinase-type plasminogen activator receptor (uPAR) in tumor angiogenesis and metastasis. In this study, we evaluated the role of MMP-9 and uPAR in medulloblastoma cancer cell resistance to ionizing irradiation (IR) and tested the antitumor efficacy of siRNA (short interfering RNA) against MMP-9 [plasmid siRNA vector for MMP-9 (pM)] and uPAR [plasmid vector for uPAR (pU)] either alone or in combination [plasmid siRNA vector for both uPAR and MMP-9 (pUM)]. Cell proliferation (BrdU assay), apoptosis (in situ TUNEL for DNA fragmentation), and cell-cycle (FACS) analyses were carried out to determine the effect of siRNA either alone or in combination with IR on G2/M cell-cycle arrest in medulloblastoma cells. IR upregulated MMP-9 and uPAR expression in medulloblastoma cells; pM, pU, and pUM in combination with IR effectively reduced both MMP-9 and uPAR expression, thereby leading to increased radiosensitivity of medulloblastoma cells. siRNA treatments (pM, pU, and pUM) also promoted IR-induced apoptosis and enhanced IR-induced G2/M arrest during cell-cycle progression. While IR induces G2/M cell-cycle arrest through inhibition of the pCdc2- and cyclin B-regulated signaling pathways involving p53, p21/WAF1, and Chk2 gene expression, siRNA (pM, pU, and pUM) alone or in combination with IR induced G2/M arrest mediated through inhibition of the pCdc2- and cyclin B1-regulated signaling pathways involving Chk1 and Cdc25A gene expression. Taken together, our data suggest that downregulation of MMP-9 and uPAR induces Chk1-mediated G2/M cell-cycle arrest, whereas the disruption caused by IR alone is dependent on p53- and Chk2-mediated G2/M cell-cycle arrest.  相似文献   

20.
We investigated mitotic delay during replication arrest (the S-M checkpoint) in DT40 B-lymphoma cells deficient in the Chk1 or Chk2 kinase. We show here that cells lacking Chk1, but not those lacking Chk2, enter mitosis with incompletely replicated DNA when DNA synthesis is blocked, but only after an initial delay. This initial delay persists when S-M checkpoint failure is induced in Chk2-/- cells with the Chk1 inhibitor UCN-01, indicating that it does not depend on Chk1 or Chk2 activity. Surprisingly, dephosphorylation of tyrosine 15 did not accompany Cdc2 activation during premature entry to mitosis in Chk1-/- cells, although mitotic phosphorylation of cyclin B2 did occur. Previous studies have shown that Chk1 is required to stabilize stalled replication forks during replication arrest, and strikingly, premature mitosis occurs only in Chk1-deficient cells which have lost the capacity to synthesize DNA as a result of progressive replication fork inactivation. These results suggest that Chk1 maintains the S-M checkpoint indirectly by preserving the viability of replication structures and that it is the continued presence of such structures, rather than the activation of Chk1 per se, which delays mitosis until DNA replication is complete.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号