首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
DNA double-strand breaks are thought to precede the formation of most radiation-induced micronuclei. Phosphorylation of the histone H2AX is an early indicator of DNA double-strand breaks. Here we studied the phosphorylation status of the histone H2AX in micronuclei after exposure of cultured cells to ionizing radiation or treatment with colchicine. In human astrocytoma SF268 cells, after exposure to gamma radiation, the proportion of gamma-H2AX-positive to gamma-H2AX-negative micronuclei increases. The majority of the gamma-H2AX-positive micronuclei are centromere-negative. The number of gamma-H2AX-positive micronuclei continues to increase even 24 h postirradiation when most gamma-H2AX foci in the main nucleus have disappeared. In contrast, in normal human fibroblasts (BJ), the proportion of gamma-H2AX-positive to gamma-H2AX-negative micronuclei remains constant, and the majority of the centromere-negative cells are gamma-H2AX-negative. Treatment of both cell lines with colchicine results in mostly centromere-positive, gamma-H2AX-negative micronuclei. Immunostaining revealed co-localization of MDC1 and ATM with gamma-H2AX foci in both main nuclei and micronuclei; however, other repair proteins, such as Rad50, 53BP1 and Rad17, that co-localized with gamma-H2AX foci in the main nuclei were not found in the micronuclei. Combination of the micronucleus assay with gamma-H2AX immunostaining provides new insights into the mechanisms of the formation and fate of micronuclei.  相似文献   

2.
Etoposide (VP-16) belongs to the family of DNA topoisomerase II (topo2) inhibitors, drugs widely used in cancer chemotherapy. Their presumed mode of action is stabilization of “cleavable complexes” between topo2 and DNA; collisions of DNA replication forks with these complexes convert them into DNA double-strand breaks (DSBs), potentially lethal lesions that may trigger apoptosis. Immunocytochemical detection of activation of ATM (ATM-S1981P) and histone H2AX phosphorylation (γH2AX) provides a sensitive probe of the induction of DSBs in individual cells. Using multiparameter cytometry we measured the expression of ATM-S1981P and γH2AX as well as initiation of apoptosis (caspase-3 activation) in relation to the cell cycle phase in etoposide-treated human lymphoblastoid TK6 cells. The induction of ATM-S1981P and γH2AX was seen in all phases of the cell cycle. The G1-phase cells, however, preferentially underwent apoptosis. The extent of etoposide-induced H2AX phosphorylation was partially reduced by N-acetyl-L-cysteine (NAC), a scavenger of reactive oxygen species (ROS).The maximal reduction of H2AX phosphorylation by NAC, seen in G1-phase cells, was nearly 50%. NAC also protected a fraction of G1 cells from etoposide-induced apoptosis, but had no such effect on S or G2M cells. However, no significant rise in the intracellular level of ROS upon treatment with etoposide was detected. The effects of etoposide were compared with the previously investigated effects of another topo2 inhibitor, mitoxantrone. The latter was seen to induce a maximal level of ATM-S1981P and γH2AX (partially abrogated by NAC) in G1-phase cells, but unlike etoposide, triggered apoptosis exclusively of S-phase cells. The data suggest that in addition to the generally accepted mechanism involving collisions of replication forks with the “cleavable complexes”, other mechanisms which appear to be different for etoposide vs. mitoxantrone, may contribute to formation of DSBs and to triggering of apoptosis.  相似文献   

3.
Increased concentrations of extracellular solutes affect cell function and fate by stimulating cellular responses, such as evoking MAPK cascades, altering cell cycle progression, and causing apoptosis. Our study results here demonstrate that hyperosmotic stress induced H2AX phosphorylation (γH2AX) by an unrevealed kinase cascade involving polo-like kinase 3 (Plk3) in human corneal epithelial (HCE) cells. We found that hyperosmotic stress induced DNA-double strand breaks and increased γH2AX in HCE cells. Phosphorylation of H2AX at serine 139 was catalyzed by hyperosmotic stress-induced activation of Plk3. Plk3 directly interacted with H2AX and was colocalized with γH2AX in the nuclei of hyperosmotic stress-induced cells. Suppression of Plk3 activity by overexpression of a kinase-silencing mutant or by knocking down Plk3 mRNA effectively reduced γH2AX in hyperosmotic stress-induced cells. This was consistent with results that show γH2AX was markedly suppressed in the Plk3−/− knock-out mouse corneal epithelial layer in response to hyperosmotic stimulation. The effect of hyperosmotic stress-activated Plk3 and increased γH2AX in cell cycle progression showed an accumulation of G2/M phase, altered population in G1 and S phases, and increased apoptosis. Our results for the first time reveal that hyperosmotic stress-activated Plk3 elicited γH2AX. This Plk3-mediated activation of γH2AX subsequently regulates the cell cycle progression and cell fate.  相似文献   

4.
Damage to DNA that engenders double-strand breaks (DSBs) triggers phosphorylation of histone H2AX on Ser-139. Expression of phosphorylated H2AX (_H2AX) can be revealed immunocytochemically; the intensity of ?H2AX immunofluorescence (IF) measured by cytometry was reported to correlate with the frequency of DSBs induced by X-ray radiation or by DNA damaging antitumor drugs. The aim of the present study was to measure expression of ?H2AX following exposure of HeLa and HL-60 cells to a wide range of doses of UV-B light (6.1 J/m2-3.45 kJ/m2) and using multiparameter flow and laser scanning cytometry (LSC) to correlate DNA damage with cell cycle phase and induction of apoptosis. In both cell lines, the highest degree of H2AX phosphorylation induced by UV was seen in S-phase cells, particularly during early portion of S. In cells that did not replicate DNA (G1, G2 and M) the degree of H2AX phosphorylation was markedly lower than that in S-phase cells, and was strongly UV dose-dependent. Furthermore, the level of UV-induced γH2AX in G1, G2 and M was much higher in HeLa- than in HL-60-cells. Apoptotic cells become apparent >2h after exposure to UV and exhibited nearly an order of magnitude higher intensity of γH2AX IF than that initially induced by UV; predominantly S-phase cells underwent apoptosis. While the suppression of DNA replication aphidicolin prevented the induction of H2AX phosphorylation by UV in most S phase cells, it had no effect on a small cohort of cells that appeared to be entering S-phase, that expressed very high levels of γH2AX. Furthermore, aphidicolin itself induced γH2AX in early-S phase cells. The induction of γH2AX by UV was inhibited, but the incidence of apoptosis increased, by 5 mM caffeine, a known inhibitor of PI-3-related kinases. The data are consistent with the notion that H2AX phosphorylation observed throughout S phase reflects formation of DSBs due to the collision of replication forks with the UV-induced primary DNA lesions. Induction of γH2AX in GG1, GG2 and M is likely a response to the primary DSBs generated during UV exposure and/or DNA repair. It is unclear why the latter process was more pronounced in HeLa than in HL-60 cells.  相似文献   

5.
During the last decade, chromatin research has been focusing on the role of histone variability as a modulator of chromatin structure and function. Histone variability can be the result of either post-translational modifications or intrinsic variation at the primary structure level: histone variants. In this review, we center our attention on one of the most extensively characterized of such histone variants in recent years, histone H2AX. The molecular phylogeny of this variant seems to have run in parallel with that of the major canonical somatic H2A1 in eukaryotes. Functionally, H2AX appears to be mainly associated with maintaining the genome integrity by participating in the repair of the double-stranded DNA breaks exogenously introduced by environmental damage (ionizing radiation, chemicals) or in the process of homologous recombination during meiosis. At the structural level, these processes involve the phosphorylation of serine at the SQE motif, which is present at the very end of the C-terminal domain of H2AX, and possibly other PTMs, some of which have recently started to be defined. We discuss a model to account for how these H2AX PTMs in conjunction with chromatin remodeling complexes (such as INO80 and SWRI) can modify chromatin structure (remodeling) to support the DNA unraveling ultimately required for DNA repair.  相似文献   

6.
Adenovirus infection activates cellular DNA damage response and repair pathways. Viral proteins that are synthesized before viral DNA replication prevent recognition of viral genomes as a substrate for DNA repair by targeting members of the sensor complex composed of Mre11/Rad50/NBS1 for degradation and relocalization, as well as targeting the effector protein DNA ligase IV. Despite inactivation of these cellular sensor and effector proteins, infection results in high levels of histone 2AX phosphorylation, or γH2AX. Although phosphorylated H2AX is a characteristic marker of double-stranded DNA breaks, this modification was widely distributed throughout the nucleus of infected cells and was coincident with the bulk of cellular DNA. H2AX phosphorylation occurred after the onset of viral DNA replication and after the degradation of Mre11. Experiments with inhibitors of the serine-threonine kinases ataxia telangiectasia mutated (ATM), AT- and Rad3-related (ATR), and DNA protein kinase (DNA-PK), the kinases responsible for H2AX phosphorylation, indicate that H2AX may be phosphorylated by ATR during a wild-type adenovirus infection, with some contribution from ATM and DNA-PK. Viral DNA replication appears to be the stimulus for this phosphorylation event, since infection with a nonreplicating virus did not elicit phosphorylation of H2AX. Infected cells also responded to high levels of input viral DNA by localized phosphorylation of H2AX. These results are consistent with a model in which adenovirus-infected cells sense and respond to both incoming viral DNA and viral DNA replication.Cellular DNA damage response pathways protect and preserve the integrity of the genome. These pathways, which are activated in response to various forms of DNA damage, involve a number of proteins that participate in both DNA repair and cell cycle progression (62). The serine-threonine kinases ataxia telangiectasia mutated (ATM), AT- and Rad3-related (ATR), and DNA protein kinase (DNA-PK) are activated in response to distinct types of damage. The ATM pathway is activated primarily by double-stranded DNA breaks (4, 30). DNA-PK acts in conjunction with the DNA ligase IV/XRCC4 complex to mediate the ligation of double-stranded breaks through nonhomologous end joining (34). The ATR pathway can be activated in response to a wide range of genotoxic stresses, such as base or nucleotide excision, double-stranded breaks, or single-stranded breaks. Activation of ATR is generally thought to occur via the recognition of single-stranded tracks of DNA (63). Each of these pathways leads to the phosphorylation and activation of a number of cellular proteins such as the variant histone H2AX, checkpoint kinases 1 and 2 (Chk1 and Chk2), and Nijmegen break syndrome protein 1 (NBS1), among others (62). Signals transmitted by a cascade of phosphorylation events result in cell cycle arrest and the accumulation of repair protein complexes at sites of DNA damage.Upon recognition of a double-stranded DNA break by the cell, H2AX is phosphorylated on an extended C-terminal tail at serine 139 by the phosphatidylinositol 3-kinase (PI3K)-related kinases ATM, ATR, and DNA-PK (9, 41, 44, 58). Considered one of the earliest indications of a double-stranded DNA break, phosphorylated H2AX (γH2AX) acts as a scaffolding protein to which a number of DNA repair factors can dock to facilitate repair of the damaged DNA (36, 42, 53). Areas of phosphorylated H2AX, termed γH2AX foci, are enriched for proteins involved in both homologous recombination and nonhomologous end joining, such as NBS1, BRCA1 (42), and Mdc1 (24, 50).Although adenovirus is able to activate both ATM and ATR pathways (11), adenoviral proteins limit the extent and consequences of signaling through these pathways. The E1B-55K and E4orf6 proteins form an E3 ubiquitin ligase with the cellular proteins Cullin-5, elongins B and C, and Rbx1 (28, 43). This complex targets key cellular proteins involved in cellular response to DNA damage, including p53 (28, 43), Mre11 (51), and DNA ligase IV (3). The E4orf3 gene product targets cellular proteins central to both the cellular DNA damage response and the antiviral response. The E4orf3 protein of species C adenoviruses alters the localization of Mre11/Rad50/NBS1 (MRN) complex members within the nucleus to prevent association with centers of viral DNA replication and to ensure efficient viral DNA replication (17, 18, 52). In addition, these three viral early proteins direct members of the MRN complex (2, 35) and the single-stranded DNA-binding protein 2 (20) to cytoplasmic aggresomes, where these sequestered proteins are effectively inactivated. These viral activities, along with the inactivation of DNA-PK by E4orf3 and E4orf6 gene products (7), appear to prevent recognition of viral genomes by the MRN complex and prevent ligation of these genomes through nonhomologous end joining. In cells infected with a virus with E4 deleted, Mre11 physically binds to viral DNA in an NBS1-dependent manner and may prevent efficient genome replication (37). The overlapping means by which adenovirus disables the MRN complex and prevents DNA damage repair serves to illustrate the importance of this activity for a productive adenovirus infection. However, despite having DNA damage signaling and DNA repair pathways dismantled, adenovirus-infected cells exhibit some characteristic changes associated with DNA damage signaling events, such as the phosphorylation of H2AX (6, 15). Thus, it appears that adenovirus effectively inhibits DNA repair activity but may not fully suppress the early events of DNA damage signaling.The focus of the present study was to elucidate the activation of DNA damage signaling pathways revealed by phosphorylation of the variant histone H2AX during wild-type adenovirus infection and to determine what stage of the virus life cycle leads to this activation. We demonstrate that infected cells respond to viral genome replication with high levels of H2AX phosphorylation throughout the cell nucleus. This phosphorylation event is not localized to viral replication centers and does not appear to be concurrent with cellular double-stranded DNA breaks; rather, H2AX phosphorylation occurs coincident with the bulk of cellular chromatin. H2AX phosphorylation follows viral DNA replication and reaches peak levels after the degradation of the Mre11. In addition, we observed that infected cells can respond to both the presence of incoming viral genomes and genome replication by initiating H2AX phosphorylation.  相似文献   

7.
We have recently described an involvement of H2AX into the Fanconi anemia (FA) BRCA pathway through recruitment of FA protein FANCD2 to the sites of stalled replication forks. We showed that BRCA1 mediates the recruitment of FANCD2 by γH2AX to damaged chromatin and cells deficient or depleted of H2AX exhibit an FA-like phenotype, including an excess of chromatid-type chromosomal aberrations and hypersensitivity to MMC. Here, we discuss a model for the FA pathway and how it could partially explain the common phenotypes of H2AX, BRCA2 and FA deficiencies.  相似文献   

8.
Nitric oxide-releasing acetylsalicylic acid (NO-ASA; NO-aspirin) developed as an anti-inflammatory agent that was expected to avoid some of the adverse effects of aspirin (ASA), was recently shown to be cytotoxic to cells of different tumor lines. The cytotoxic properties and potency of NO-ASA are different than those of ASA which implies that the intracellular targets for NO-ASA and ASA, and their mechanism of action, are different. The aim of the present study was to reveal whether the cytotoxicity induced by NO-ASA is mediated by damage to DNA. We observed that even brief (1 h) treatment of human B-lymphoblastoid TK6 cells with ? 5 μM NO-ASA led to DNA damage revealed by the alkaline and neutral comet assays, histone H2AX phosphorylation on Ser 139, and ATM phosphorylation on Ser 1981, a marker of activation of this kinase. The induction of H2AX phosphorylation was preferential to S-phase cells. Exposure to ? 5 μM NO-ASA for over 3 h led to apoptosis, also preferentially of S-phase cells. Apoptosis was atypical; while chromatin was highly condensed there was no evidence of nuclear fragmentation nor were the cells positive in the TUNEL assay though they did express activated caspase-3. The induction of phosphorylation of H2AX on Ser 139 by NO-ASA was markedly attenuated in the presence of N-acetyl-L-cysteine, a scavenger of reactive oxygen species (ROS). The data imply that the NO-ASA induces DNA damage through oxidative stress; the oxidation-generated lesions provide a signal for induction of H2AX phosphorylation during DNA replication, perhaps when the progressing replication forks collide with the primary lesions converting them to DNA double-strand breaks. Because neither induction of H2AX phosphorylation nor apoptosis were observed at equimolar concentrations of ASA, the NO moiety attached to ASA appeared to mediate these effects.  相似文献   

9.
Viard MP  Martin F  Pugin A  Ricci P  Blein JP 《Plant physiology》1994,104(4):1245-1249
Changes in plasmalemma ion fluxes were observed when tobacco (Nicotiana tabacum) cells were treated with cryptogein, a proteinaceous elicitor from Phytophthora cryptogea. A strong alkalization of the culture medium, accompanied by a leakage of potassium, was induced within a few minutes of treatment. These effects reached a maximum after 30 to 40 min and lasted for several hours. This treatment also resulted in a rapid, but transient, production of activated oxygen species. All these physiological responses were fully sensitive to staurosporine, a known protein kinase inhibitor. Furthermore, a study of protein phosphorylation showed that cryptogein induced a staurosporine-sensitive phosphorylation of several polypeptides. These data suggest that phosphorylated proteins may be essential for the transduction of elicitor signals.  相似文献   

10.
The Ser-139 phosphorylated form of replacement histone H2AX (gamma-H2AX) is induced within large chromatin domains by double-strand DNA breaks (DSBs) in mammalian chromosomes. This modification is known to be important for the maintenance of chromosome stability. However, the mechanism of gamma-H2AX formation at DSBs and its subsequent elimination during DSB repair remains unknown. gamma-H2AX formation and elimination could occur by direct phosphorylation and dephosphorylation of H2AX in situ in the chromatin. Alternatively, H2AX molecules could be phosphorylated freely in the nucleus, diffuse into chromatin regions containing DSBs and then diffuse out after DNA repair. In this study we show that free histone H2AX can be efficiently phosphorylated in vitro by nuclear extracts and that free gamma-H2AX can be dephosphorylated in vitro by the mammalian protein phosphatase 1-alpha. We made N-terminal fusion constructs of H2AX with green fluorescent protein (GFP) and studied their diffusional mobility in transient and stable cell transfections. In the absence or presence of DSBs, only a small fraction of GFP-H2AX is redistributed after photobleaching, indicating that in vivo this histone is essentially immobile in chromatin. This suggests that gamma-H2AX formation in chromatin is unlikely to occur by diffusion of free histone and gamma-H2AX dephosphorylation may involve the mammalian protein phosphatase 1alpha.  相似文献   

11.
A variant of histone H2A, H2AX, is phosphorylated on Ser139 in response to DNA double-strand breaks (DSBs), and clusters of the phosphorylated form of H2AX (gamma-H2AX) in nuclei of DSB-induced cells show foci at breakage sites. Here, we show phosphorylation of H2AX in a cell cycle-dependent manner without any detectable DNA damage response. Western blot and immunocytochemical analyses with the anti-gamma-H2AX antibody revealed that H2AX is phosphorylated at M phase in HeLa cells. In ataxia-telangiectasia cells lacking ATM kinase activity, gamma-H2AX was scarcely detectable in the mitotic chromosomes, suggesting involvement of ATM in M-phase phosphorylation of H2AX. Single-cell gel electrophoresis assay and Western blot analysis with the anti-phospho-p53 (Ser15) antibody indicated that H2AX in human M-phase cells is phosphorylated independently of DSB and DNA damage signaling. Even in the absence of DNA damage, phosphorylation of H2AX in normal cell cycle progression may contribute to maintenance of genomic integrity.  相似文献   

12.
DNA in live cells undergoes continuous oxidative damage caused by metabolically generated endogenous as well as external oxidants and oxidant-inducers. The cumulative oxidative DNA damage is considered the key factor in aging and senescence while the effectiveness of anti-aging agents is often assessed by their ability to reduce such damage. Oxidative DNA damage also preconditions cells to neoplastic transformation. Sensitive reporters of DNA damage, particularly the induction of DNA double-strand breaks (DSBs), are activation of ATM, through its phosphorylation on Ser 1981, and phosphorylation of histone H2AX on Ser 139; the phosphorylated form of H2AX has been named γH2AX. We review the observations that constitutive ATM activation (CAA) and H2AX phosphorylation (CHP) take place in normal cells as well in the cells of tumor lines untreated by exogenous genotoxic agents. We postulate that CAA and CHP, which have been measured by multiparameter cytometry in relation to the cell cycle phase, are triggered by oxidative DNA damage. This review also presents the findings on differences in CAA and CHP in various cell lines as well as on the effects of several agents and growth conditions that modulate the extent of these histone and ATM modifications. Specifically, described are effects of the reactive oxygen species (ROS) scavenger N-acetyl-L-cysteine (NAC), and the glutathione synthetase inhibitor buthionine sulfoximine (BSO) as well as suppression of cell metabolism by growth at higher cell density or in the presence of the glucose antimetabolite 2-deoxy-D-glucose. Collectively, the reviewed data indicate that multiparameter cytometric measurement of the level of CHP and/or CAA allows one to estimate the extent of ongoing oxidative DNA damage and to measure the DNA protective-effects of antioxidants or agents that reduce or amplify generation of endogenous ROS.  相似文献   

13.
Heo K  Kim H  Choi SH  Choi J  Kim K  Gu J  Lieber MR  Yang AS  An W 《Molecular cell》2008,30(1):86-97
The phosphorylation of histone variant H2AX at DNA double-strand breaks is believed to be critical for recognition and repair of DNA damage. However, little is known about the molecular mechanism regulating the exchange of variant H2AX with conventional H2A in the context of the nucleosome. Here, we isolate the H2AX-associated factors, which include FACT (Spt16/SSRP1), DNA-PK, and PARP1 from a human cell line. Our analyses demonstrate that the H2AX-associated factors efficiently promote both integration and dissociation of H2AX and this exchange reaction is mainly catalyzed by FACT among the purified factors. The phosphorylation of H2AX by DNA-PK facilitates the exchange of nucleosomal H2AX by inducing conformational changes of the nucleosome. In contrast, poly-ADP-ribosylation of Spt16 by PARP1 significantly inhibits FACT activities for H2AX exchange. Thus, these data establish FACT as the major regulator involved in H2AX exchange process that is modulated by H2AX phosphorylation and Spt16 ADP-ribosylation.  相似文献   

14.
Despite advances in our understanding of protein kinase regulation in the DNA damage response, the mechanism that controls protein phosphatase activity in this pathway is unclear. Unlike kinases, the activity and specificity of serine/threonine phosphatases is governed largely by their associated proteins. Here we show that Tip41-like protein (TIPRL), an evolutionarily conserved binding protein for PP2A-family phosphatases, is a negative regulator of protein phosphatase 4 (PP4). Knockdown of TIPRL resulted in increased PP4 phosphatase activity and formation of the active PP4-C/PP4R2 complex known to dephosphorylate γ-H2AX. Thus, overexpression of TIPRL promotes phosphorylation of H2AX, and increases γ-H2AX positive foci in response to DNA damage, whereas knockdown of TIPRL inhibits γ-H2AX phosphorylation. In correlation with γ-H2AX levels, we found that TIPRL overexpression promotes cell death in response to genotoxic stress, and knockdown of TIPRL protects cells from genotoxic agents. Taken together, these data demonstrate that TIPRL inhibits PP4 activity to allow for H2AX phosphorylation and the subsequent DNA damage response.  相似文献   

15.
Phosphorylation of Plant H2A Histones   总被引:1,自引:1,他引:1  
Phosphorylation of wheat (Triticum aestivum) and alfalfa (Medicago sativa) H2A histone variants was examined during early seedling growth. The C-terminal regions of wheat H2A variants contain multiple S-P tetrapeptides (serine-proline adjacent to a pair of basic amino acids) which resemble known phosphorylation sites in histones from other species. Phosphorylation of nucleosomal core histones was assessed by autoradiography of proteins labeled in vivo with 32Pi and resolved by two-dimensional polyacrylamide gel electrophoresis, and phosphorylation sites were mapped by cleaving in vivo labeled H2A variants with N-bromosuccinimide. Essentially all phosphorylation of nucleosomal core histones in wheat and alfalfa seedlings occurred within the C-terminal peptides obtained from wheat and alfalfa H2A variants. A hypothesis accounting for the presence of large H2A and H2B histone variants in plants and phosphorylation of plant H2A C-terminal regions is proposed. The utility of S-P tetrapeptides for modulation of DNA-protein interactions is discussed.  相似文献   

16.
A high concentration (30 μg/ml or more) of Con A caused the death of not only thymocytes but also splenic cells of BALB/c mice, whereas a moderate concentration (3 μg/ml) of Con A induced proliferation of these cells. A high concentration of Con A also induced the death of splenic cells of athymic BALB/c-nu/nu mice and the bone marrow cells of BALB/c mice which mainly consist of non-T cells. However, any concentration (1-30 μg/ml) of Con A failed to induce the proliferation of these cells. Specific binding of tetrameric Con A to mannose-containing receptors was required for the induction of cell death. DNA fragmentation was observed by both laser flow cytometry and electrophoresis in Con A-stimulated T cells and non-T cells. This indicated that the mechanism of induction of apoptosis with Con A is not necessarily TCR-dependent. Con A induced tyrosine phosphorylation of a number of proteins in various types of cells. Interestingly, phosphorylation of the 40 kDa protein developed only in the thymocytes and spleen cells that contain T cells, whereas phosphorylation of the 80 and 120 kDa proteins appeared in both T cells and non-T cells. These results suggested that the Con A-induced apoptosis of T cells and non-T cells involves different but possibly mutually related protein tyrosine phosphorylation-linked signals.  相似文献   

17.
Control of sister chromatid recombination by histone H2AX   总被引:1,自引:0,他引:1  
Histone H2AX has a role in suppressing genomic instability and cancer. However, the mechanisms by which it performs these functions are poorly understood. After DNA breakage, H2AX is phosphorylated on serine 139 in chromatin near the break. We show here that H2AX serine 139 enforces efficient homologous recombinational repair of a chromosomal double-strand break (DSB) by using the sister chromatid as a template. BRCA1, Rad51, and CHK2 contribute to recombinational repair, in part independently of H2AX. H2AX(-/-) cells show increased use of single-strand annealing, an error-prone deletional mechanism of DSB repair. Therefore, the chromatin response around a chromosomal DSB, in which H2AX serine 139 phosphorylation plays a central role, shapes the repair process in favor of potentially error-free interchromatid homologous recombination at the expense of error-prone repair. H2AX phosphorylation may help set up a favorable disposition between sister chromatids.  相似文献   

18.
DNA damage response is an important surveillance mechanism used to maintain the integrity of the human genome in response to genotoxic stress. Histone variant H2AX is a critical sensor that undergoes phosphorylation at serine 139 upon genotoxic stress, which provides a docking site to recruit the mediator of DNA damage checkpoint protein 1 (MDC1) and DNA repair protein complex to sites of DNA breaks for DNA repair. Here, we show that monoubiquitination of H2AX is induced upon DNA double strand breaks and plays a critical role in H2AX Ser-139 phosphorylation (γ-H2AX), in turn facilitating the recruitment of MDC1 to DNA damage foci. Mechanistically, we show that monoubiquitination of H2AX induced by RING finger protein 2 (RNF2) is required for the recruitment of active ataxia telangiectasia mutated to DNA damage foci, thus affecting the formation of γ-H2AX. Importantly, a defect in monoubiquitination of H2AX profoundly enhances ionizing radiation sensitivity. Our study therefore suggests that monoubiquitination of H2AX is an important step for DNA damage response and may have important clinical implications for the treatment of cancers.  相似文献   

19.
H2AX: the histone guardian of the genome   总被引:22,自引:0,他引:22  
At close hand to one's genomic material are the histones that make up the nucleosome. Standing guard, one variant stays hidden doubling as one of the core histones. But, thanks to its prime positioning, a variation in the tail of H2AX enables rapid modification of the histone code in response to DNA damage. A role for H2AX phosphorylation has been demonstrated in DNA repair, cell cycle checkpoints, regulated gene recombination events, and tumor suppression. In this review, we summarize what we have learned about this marker of DNA breaks, and highlight some of the questions that remain to be elucidated about the physiological role of H2AX. We also suggest a model in which chromatin restructuring mediated by H2AX phosphorylation serves to concentrate DNA repair/signaling factors and/or tether DNA ends together, which could explain the pleotropic phenotypes observed in its absence.  相似文献   

20.
DNA double-strand breaks (DSBs) which occurs in cells after ionizing radiation (IR) or chemical agents are the most dangerous lesions in eukariotic cells, which leads to cell death or chromosome abberations and cancer. One of the earliest response of cells to DSBs formation is phosphorylation by 139 serine of core variant histone H2AX in megabase chromatin domains around DSB (gamma-H2AX), which amplify signal and makes it possible to identify even one DSB in genome. Effective formation of gamma-H2AX is very important for maintenance of genome stability. Here, using immunofluorescent and Western blotting techniques, we studied dynamics of gamma-H2AX formation in human lymphocytes of various individuals irradiated ex vivo. We have found that dynamics of gamma-H2AX formation in lymphocytes differ between individuals but have similar kinetics and statistically is independent on people age.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号