共查询到20条相似文献,搜索用时 0 毫秒
1.
Cdc42和球形肌动蛋白在卵母细胞胞质分裂中的定位分析 总被引:1,自引:0,他引:1
研究活性Cdc42与球形肌动蛋白(G-actin)在爪蟾卵母细胞胞质分裂中的定位关系。分别用GFP-wGBDmRNA与罗丹明-594-微管蛋白、Alexa-488-球形肌动蛋白与罗丹明-594-微管蛋白、GFP-wGBDmRNA与Alexa-594-球形肌动蛋白共同显微注射爪蟾卵母细胞。利用共聚焦显微镜,时间延迟摄影方法,分别观察活体卵母细胞中活性Cdc42、球形肌动蛋白在胞质分裂过程中的定位,以及活性Cdc42与球形肌动蛋白在胞质分裂中的定位关系。在卵母细胞胞质分裂中,活性Cdc42与球形肌动蛋白存在空间上共定位现象,并且在时相上具有一致性。结果提示活性Cdc42和球形肌动蛋白在卵母细胞胞质分裂过程中密切相关。 相似文献
2.
Ras family small GTPases play a critical role in malignant transformation, and Rho subfamily members contribute significantly to this process. Anchorage-independent growth and the ability to avoid detachment-induced apoptosis (anoikis) are hallmarks of transformed epithelial cells. In this study, we have demonstrated that constitutive activation of Cdc42 inhibits anoikis in Madin-Darby canine kidney (MDCK) epithelial cells. We showed that activated Cdc42 stimulates the ERK, JNK, and p38 MAPK pathways in suspension condition; however, inhibition of these signaling does not affect Cdc42-stimulated cell survival. However, we demonstrated that inhibition of phosphatidylinositol 3-kinase (PI3K) pathway abolishes the protective effect of Cdc42 on anoikis. Taking advantage of a double regulatory expression system, we also showed that Cdc42-stimulated cell survival in suspension condition is, at least in part, mediated by Rac1. We also provide evidence for a positive feedback loop involving Rac1 and PI3K. In addition, we show that the survival functions of both constitutively active Cdc42 and Rac1 GTPases are abrogated by Latrunculin B, an actin filament-depolymerizing agent, implying an important role for the actin cytoskeleton in mediating survival signaling activated by Cdc42 and Rac1. Together, our results indicate a role for Cdc42 in anchorage-independent survival of epithelial cells. We also propose that this survival function depends on a positive feedback loop involving Rac1 and PI3K. 相似文献
3.
4.
5.
The fission yeast Schizosaccharomyces pombe is a rod-shaped cell that grows by linear extension at the cell tips, with a nearly constant width throughout the cell cycle. This simple geometry makes it an ideal system for studying the control of cellular dimensions. In this study, we carried out a near-genome-wide screen for mutants wider than wild-type cells. We found 11 deletion mutants that were wider; seven of the deleted genes are implicated in the control of the small GTPase Cdc42, including the Cdc42 guanine nucleotide exchange factor (GEF) Scd1 and the Cdc42 GTPase-activating protein (GAP) Rga4. Deletions of rga4 and scd1 had additive effects on cell width, and the proteins localized independently of one another, with Rga4 located at the cell sides and Scd1 at the cell tips. Activated Cdc42 localization is altered in rga4Δ, scd1Δ, and scd2Δ mutants. Delocalization and ectopic retargeting experiments showed that the localizations of Rga4 and Scd1 are crucial for their roles in determining cell width. We propose that the GAP Rga4 and the GEF Scd1 establish a gradient of activated Cdc42 within the cellular tip plasma membrane, and it is this gradient that determines cell growth-zone size and normal cell width. 相似文献
6.
Rac1 and Cdc42 are members of the Rho family of small GTPases and have been shown to induce lamellipodia and filopodia formation, respectively. This leads to changes in cytoskeleton organization and as a consequence affects cell migration. In the present work we demonstrate that endogenous Rac1 and Cdc42 interact with calmodulin (CaM) in a Ca(2+)-dependent fashion. The interaction of Rac1 and Cdc42 with CaM was shown to be direct. This novel interaction was further confirmed in platelets using co-immunoprecipitation studies. Using CaM database analysis and in vitro peptide competition assays we have identified a 14 amino acid region in Rac1 that is essential for CaM binding. The scrambled form of the peptide did not bind CaM demonstrating specificity of the predicted CaM binding region in Rac1. A similar region capable of binding CaM exists in Cdc42. Furthermore, using the optimal activation time-point for each GTPase, the role of CaM in the function of Rac1 and Cdc42 was examined. Results demonstrate that in human platelets, thrombin caused maximal activation of Rac1 and Cdc42 at ~60 s and ~25 s respectively. The potent CaM antagonist W7 abolished thrombin-mediated activation of Rac1. However, addition of W7 resulted in the activation of Cdc42 over basal and W7 did not inhibit thrombin-mediated activation of Cdc42. The less potent CaM inhibitor, W5, did not have any effect on Rac1 and Cdc42 activation. The results demonstrate that in platelets, binding of CaM to Rac1 increases its activation while its binding to Cdc42 reduces the activation of this GTPase. This suggests an important role for CaM in coordinating Rac1 and Cdc42 activation and in the regulation of cytoskeleton remodeling. 相似文献
7.
Pelish HE Peterson JR Salvarezza SB Rodriguez-Boulan E Chen JL Stamnes M Macia E Feng Y Shair MD Kirchhausen T 《Nature chemical biology》2006,2(1):39-46
Inspired by the usefulness of small molecules to study membrane traffic, we used high-throughput synthesis and phenotypic screening to discover secramine, a molecule that inhibits membrane traffic out of the Golgi apparatus by an unknown mechanism. We report here that secramine inhibits activation of the Rho GTPase Cdc42, a protein involved in membrane traffic, by a mechanism dependent upon the guanine dissociation inhibitor RhoGDI. RhoGDI binds Cdc42 and antagonizes its membrane association, nucleotide exchange and effector binding. In vitro, secramine inhibits Cdc42 binding to membranes, GTP and effectors in a RhoGDI-dependent manner. In cells, secramine mimics the effects of dominant-negative Cdc42 expression on protein export from the Golgi and on Golgi polarization in migrating cells. RhoGDI-dependent Cdc42 inhibition by secramine illustrates a new way to inhibit Rho GTPases with small molecules and provides a new means to study Cdc42, RhoGDI and the cellular processes they mediate. 相似文献
8.
Coordination of Cytokinesis and Cell Separation by Endosomal Targeting of a Cdc42-specific Guanine Nucleotide Exchange Factor in Ustilago maydis
下载免费PDF全文

The small GTPase Cdc42 is a key regulator of cell polarity and cytoskeletal organization in most eukaryotic cells. In Ustilago maydis, Cdc42 and the guanine nucleotide exchange factor (GEF) Don1 regulate cytokinesis and cell separation. Don1 belongs to the FGD1 family of Cdc42-specific GEFs that are characterized by a C-terminal lipid-binding FYVE domain. Although the FGD1/frabin family of Rho-GEFs is evolutionary conserved from fungi to mammals the role of the FYVE domain for its biological function is unknown. Here, we show that the FYVE domain is specific for phosphatidylinositol-3-phosphate (PtdIns(3)P) and targets Don1 to endosomal vesicles. During cytokinesis asymmetric accumulation of Don1-containing vesicles occurs at the site of septation. We could show that FYVE-dependent localization is critical for the function of Don1 at normal expression levels but can be compensated for by overexpression of Don1 lacking a functional FYVE domain. Our results demonstrate that endosomal compartmentalization of a Cdc42-specific exchange factor is involved in the coordination of cytokinesis and cell separation. 相似文献
9.
10.
The human fungal pathogen Candida albicans can switch between yeast, pseudohyphal, and hyphal morphologies. To investigate whether the distinctive characteristics of hyphae are due to increased activity of the Cdc42 GTPase, strains lacking negative regulators of Cdc42 were constructed. Unexpectedly, the deletion of the Cdc42 Rho guanine dissociation inhibitor RDI1 resulted in reduced rather than enhanced polarized growth. However, when cells lacking both Cdc42 GTPase-activating proteins, encoded by RGA2 and BEM3, were grown under pseudohyphal-promoting conditions the bud was highly elongated and lacked a constriction at its base, so that its shape resembled a hyphal germ tube. Moreover, a Spitzenk?rper was present at the bud tip, a band of disorganized septin was present at bud base, true septin rings formed within the bud, and nuclei migrated out of the mother cell before the first mitosis. These are all characteristic features of a hyphal germ tube. Intriguingly, we observed hyphal-specific phosphorylation of Rga2, suggesting a possible mechanism for Cdc42 activation during normal hyphal development. In contrast, expression of Cdc42(G12V), which is constitutively GTP bound because it lacks GTPase activity, resulted in swollen cells with prominent and stable septin bars. These results suggest the development of hyphal-specific characteristics is promoted by Cdc42-GTP in a process that also requires the intrinsic GTPase activity of Cdc42. 相似文献
11.
The Rho-type GTPase, Cdc42, has been implicated in a variety of functions in the yeast life cycle, including septin organization for cytokinesis, pheromone response, and haploid invasive growth. A group of proteins called GTPase-activating proteins (GAPs) catalyze the hydrolysis of GTP to GDP, thereby inactivating Cdc42. At the time this study began, there was one known GAP, Bem3, and one putative GAP, Rga1, for Cdc42. We identified another putative GAP for Cdc42 and named it Rga2 (Rho GTPase-activating protein 2). We confirmed by genetic and biochemical criteria that Rga1, Rga2, and Bem3 act as GAPs for Cdc42. A detailed characterization of Rga1, Rga2, and Bem3 suggested that they regulate different subsets of Cdc42 function. In particular, deletion of the individual GAPs conferred different phenotypes. For example, deletion of RGA1, but not RGA2 or BEM3, caused hyperinvasive growth. Furthermore, overproduction or loss of Rga1 and Rga2, but not Bem3, affected the two-hybrid interaction of Cdc42 with Ste20, a p21-activated kinase (PAK) kinase required for haploid invasive growth. These results suggest Rga1, and possibly Rga2, facilitate the interaction of Cdc42 with Ste20 to mediate signaling in the haploid invasive growth pathway. Deletion of BEM3 resulted in cells with severe morphological defects not observed in rga1Δ or rga2Δ strains. These data suggest that Bem3 and, to a lesser extent, Rga1 and Rga2 facilitate the role of Cdc42 in septin organization. Thus, it appears that the GAPs play a role in modulating specific aspects of Cdc42 function. Alternatively, the different phenotypes could reflect quantitative rather than qualitative differences in GAP activity in the mutant strains. 相似文献
12.
The tumour suppressor functions of p53 that are important for its activity depend on its role as a cell cycle arrest mediator and apoptosis inducer. Here we identify a novel function for p53 in regulating cell morphology and movement. We investigated the overall effect of p53 on morphological changes induced by RhoA, Rac1 and Cdc42 GTPases in mouse embryonic fibroblasts (MEFs). Interestingly, p53 exerted a selective effect on Cdc42-mediated cell functions. (i) Both overexpression of wild-type p53 and activation of endogenous p53 counteracted Cdc42-induced filopodia formation. Conversely, p53-deficient MEFs exhibited constitutive membrane filopodia. Mechanistic studies indicate that p53 prevents the initiating steps of filopodia formation downstream of Cdc42. (ii) Over expression of p53 modulates cell spreading of MEFs on fibronectin. (iii) During cell migration, the reorientation of the Golgi apparatus in the direction of movement is abolished by wild-type p53 expression, thus preventing cell polarity. Our data demonstrate a previously uncharacterized role for p53 in regulating Cdc42-dependent cell effects that control actin cytoskeletal dynamics and cell movement. This novel function may contribute to p53 anti-tumour activity. 相似文献
13.
14.
Ben Klünder Tina Freisinger Roland Wedlich-S?ldner Erwin Frey 《PLoS computational biology》2013,9(12)
Cell polarization is a prerequisite for essential processes such as cell migration, proliferation or differentiation. The yeast Saccharomyces cerevisiae under control of the GTPase Cdc42 is able to polarize without the help of cytoskeletal structures and spatial cues through a pathway depending on its guanine nucleotide dissociation inhibitor (GDI) Rdi1. To develop a fundamental understanding of yeast polarization we establish a detailed mechanistic model of GDI-mediated polarization. We show that GDI-mediated polarization provides precise spatial and temporal control of Cdc42 signaling and give experimental evidence for our findings. Cell cycle induced changes of Cdc42 regulation enhance positive feedback loops of active Cdc42 production, and thereby allow simultaneous switch-like regulation of focused polarity and Cdc42 activation. This regulation drives the direct formation of a unique polarity cluster with characteristic narrowing dynamics, as opposed to the previously proposed competition between transient clusters. As the key components of the studied system are conserved among eukaryotes, we expect our findings also to apply to cell polarization in other organisms. 相似文献
15.
Pak2, a member of the p21-activated protein kinase (Pak) family, is activated in response to a variety of stresses and is directly involved in the induction of cytostasis. At the molecular level Pak2 binds Cdc42(GTP), translocating Pak2 to the endoplasmic reticulum where it is autophosphorylated and activated. Pak2 is autophosphorylated at eight sites; Ser-141 and Ser-165 in the regulatory domain and Thr-402 in the activation loop are identified as key sites in activation of the protein kinase. The function of phosphorylation of Ser-141 and Ser-165 on the activation was analyzed with wild-type (WT) and mutants of Pak2. With S141A, the level of autophosphorylation was reduced to 65% as compared with that of WT and S141D with a concomitant 45% reduction in substrate phosphorylation, indicating that phosphorylation at Ser-141 is required for optimal activity. Autophosphorylation inhibited the interaction between WT Pak2 and Cdc42(GTP). In 293T cells, WT Pak2, S141A, and S141D formed a stable complex with the constitutively active mutant Cdc42 L61, but not with the dominant negative Cdc42 N17. As shown in glutathione S-transferase pull-down assays, S141A bound to Cdc42(GTP) at a 6-fold higher level than that of S141D. In contrast, the S165A and S165D mutants had no effect on autophosphorylation, binding to Cdc42, or activation of Pak2. In summary, autophosphorylation of Ser-141 was required for activation of Pak2 and down-regulated the interaction of Pak2 with Cdc42. A model is proposed suggesting that binding of Cdc42 localizes Pak2 to the endoplasmic reticulum, where autophosphorylation alters association of the two proteins. 相似文献
16.
E-cadherin is a transmembrane protein that mediates Ca(2+)-dependent cell-cell adhesion. Cdc42, a member of the Rho family of small GTPases, participates in cytoskeletal rearrangement and cell cycle progression. Recent evidence reveals that members of the Rho family modulate E-cadherin function. To further examine the role of Cdc42 in E-cadherin-mediated cell-cell adhesion, we developed an assay for active Cdc42 using the GTPase-binding domain of the Wiskott-Aldrich syndrome protein. Initiation of E-cadherin-mediated cell-cell attachment significantly increased in a time-dependent manner the amount of active Cdc42 in MCF-7 epithelial cell lysates. By contrast, Cdc42 activity was not increased under identical conditions in MCF-7 cells incubated with anti-E-cadherin antibodies nor in MDA-MB-231 (E-cadherin negative) epithelial cells. By fusing the Wiskott-Aldrich syndrome protein/GTPase-binding domain to a green fluorescent protein, activation of endogenous Cdc42 by E-cadherin was demonstrated in live cells. These data indicate that E-cadherin activates Cdc42, demonstrating bi-directional interactions between the Rho- and E-cadherin signaling pathways. 相似文献
17.
The dynamic regulation of polarized cell growth allows cells to form structures of defined size and shape. We have studied the regulation of polarized growth using mating yeast as a model. Haploid yeast cells treated with high concentration of pheromone form successive mating projections that initiate and terminate growth with regular periodicity. The mechanisms that control the frequency of growth initiation and termination under these conditions are not well understood. We found that the polarisome components Spa2, Pea2, and Bni1 and the Cdc42 regulators Cdc24 and Bem3 control the timing and frequency of projection formation. Loss of polarisome components and mutation of Cdc24 decrease the frequency of projection formation, while loss of Bem3 increases the frequency of projection formation. We found that polarisome components and the cell fusion proteins Fus1 and Fus2 are important for the termination of projection growth. Our results define the first molecular regulators that control the timing of growth initiation and termination during eukaryotic cell differentiation. 相似文献
18.
The establishment and maintenance of cell polarity requires targeted recruitment of polarity regulators to the plasma membrane. Phosphatidylserine is now shown to have a key role in polarization of yeast cells and the localization of the central polarity regulator Cdc42. 相似文献
19.
Nudel binds Cdc42GAP to modulate Cdc42 activity at the leading edge of migrating cells 总被引:2,自引:0,他引:2
Shen Y Li N Wu S Zhou Y Shan Y Zhang Q Ding C Yuan Q Zhao F Zeng R Zhu X 《Developmental cell》2008,14(3):342-353
Cdc42GAP promotes inactivation of Cdc42, a small GTPase whose activation at the leading edge by guanine nucleotide exchange factors is critical for cell migration. How Cdc42GAP is regulated to ensure proper levels of active Cdc42 is poorly understood. Here we show that Nudel, a cytoplasmic dynein regulator, competes with Cdc42 for binding Cdc42GAP. Consequently, Nudel can inhibit Cdc42GAP-mediated inactivation of Cdc42 in a dose-dependent manner. Both Nudel and Cdc42GAP exhibit leading-edge localization in migrating cells. The localization of Nudel requires its phosphorylation by Erk1/2. Depleting Nudel by RNAi or overexpression of a nonphosphorylatable mutant abolishes Cdc42 activation and cell migration. Our data thus uncover Nudel as a regulator of Cdc42 during cell migration. Nudel facilitates cell migration by sequestering Cdc42GAP at the leading edge to stabilize active Cdc42 in response to extracellular stimuli. Excess active Cdc42 may in turn control its own activity by recruiting Cdc42GAP from Nudel. 相似文献
20.
Myotonic Dystrophy Kinase-Related Cdc42-Binding Kinase Acts as a Cdc42 Effector in Promoting Cytoskeletal Reorganization 总被引:16,自引:7,他引:16
下载免费PDF全文

Thomas Leung Xiang-Qun Chen Ivan Tan Edward Manser Louis Lim 《Molecular and cellular biology》1998,18(1):130-140
The Rho GTPases play distinctive roles in cytoskeletal reorganization associated with growth and differentiation. The Cdc42/Rac-binding p21-activated kinase (PAK) and Rho-binding kinase (ROK) act as morphological effectors for these GTPases. We have isolated two related novel brain kinases whose p21-binding domains resemble that of PAK whereas the kinase domains resemble that of myotonic dystrophy kinase-related ROK. These ~190-kDa myotonic dystrophy kinase-related Cdc42-binding kinases (MRCKs) preferentially phosphorylate nonmuscle myosin light chain at serine 19, which is known to be crucial for activating actin-myosin contractility. The p21-binding domain binds GTP-Cdc42 but not GDP-Cdc42. The multidomain structure includes a cysteine-rich motif resembling those of protein kinase C and n-chimaerin and a putative pleckstrin homology domain. MRCKα and Cdc42V12 colocalize, particularly at the cell periphery in transfected HeLa cells. Microinjection of plasmid encoding MRCKα resulted in actin and myosin reorganization. Expression of kinase-dead MRCKα blocked Cdc42V12-dependent formation of focal complexes and peripheral microspikes. This was not due to possible sequestration of the p21, as a kinase-dead MRCKα mutant defective in Cdc42 binding was an equally effective blocker. Coinjection of MRCKα plasmid with Cdc42 plasmid, at concentrations where Cdc42 plasmid by itself elicited no effect, led to the formation of the peripheral structures associated with a Cdc42-induced morphological phenotype. These Cdc42-type effects were not promoted upon coinjection with plasmids of kinase-dead or Cdc42-binding-deficient MRCKα mutants. These results suggest that MRCKα may act as a downstream effector of Cdc42 in cytoskeletal reorganization. 相似文献