首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Active Cdc42 GTPase, a key regulator of cell polarity, displays oscillatory dynamics that are anticorrelated at the two cell tips in fission yeast. Anticorrelation suggests competition for active Cdc42 or for its effectors. Here we show how 14-3-3 protein Rad24 associates with Cdc42 guanine exchange factor (GEF) Gef1, limiting Gef1 availability to promote Cdc42 activation. Phosphorylation of Gef1 by conserved NDR kinase Orb6 promotes Gef1 binding to Rad24. Loss of Rad24–Gef1 interaction increases Gef1 protein localization and Cdc42 activation at the cell tips and reduces the anticorrelation of active Cdc42 oscillations. Increased Cdc42 activation promotes precocious bipolar growth activation, bypassing the normal requirement for an intact microtubule cytoskeleton and for microtubule-dependent polarity landmark Tea4-PP1. Further, increased Cdc42 activation by Gef1 widens cell diameter and alters tip curvature, countering the effects of Cdc42 GTPase-activating protein Rga4. The respective levels of Gef1 and Rga4 proteins at the membrane define dynamically the growing area at each cell tip. Our findings show how the 14-3-3 protein Rad24 modulates the availability of Cdc42 GEF Gef1, a homologue of mammalian Cdc42 GEF DNMBP/TUBA, to spatially control Cdc42 GTPase activity and promote cell polarization and cell shape emergence.  相似文献   

2.
Fission yeast Cdc42p, a small GTPase of the Rho family, is essential for cell proliferation and maintenance of the rod-like cell morphology. Scd1/Ral1p is a GDP-GTP exchange factor (GEF) for Cdc42p. This study and a parallel study by others establish that Gef1p is another GEF for Cdc42p. Deletions of gef1 and scd1 are synthetically lethal, generating round dead cells, and hence mimic the phenotype of cdc42 deletion. Gef1p is localized mainly to the cell division site. Scd1p is also there, but it is also detectable in other parts of the cell, including the nucleus, growing ends, and the tips of conjugation tubes. Gef1p and Scd1p form a ring structure at the cell division site, which shrinks during cytokinesis following the contraction of the actomyosin ring. Formation of the Gef1p/Scd1p ring apparently depends on the integrity of the actomyosin ring. In turn, recruitment of Cdc42p to the cell division site follows the shrinking Gef1p/Scd1p ring; the Cdc42p accumulates like a closing iris. These observations suggest that Gef1p and Scd1p may have a role in mediating between contraction of the actomyosin ring and formation of the septum, by recruiting active Cdc42p to the septation site.  相似文献   

3.
Schizosaccharomyces pombe cdc42(+) regulates cell morphology and polarization of the actin cytoskeleton. Scd1p/Ral1p is the only described guanine nucleotide exchange factor (GEF) for Cdc42p in S. pombe. We have identified a new GEF, named Gef1p, specifically regulating Cdc42p. Gef1p binds to inactive Cdc42p but not to other Rho GTPases in two-hybrid assays. Overexpression of gef1(+) increases specifically the GTP-bound Cdc42p, and Gef1p is capable of stimulating guanine nucleotide exchange of Cdc42p in vitro. Overexpression of gef1(+) causes changes in cell morphology similar to those caused by overexpression of the constitutively active cdc42G12V allele. Gef1p localizes to the septum. gef1(+) deletion is viable but causes a mild cell elongation and defects in bipolar growth and septum formation, suggesting a role for Gef1p in the control of cell polarity and cytokinesis. The double mutant gef1delta scd1delta is not viable, indicating that they share an essential function as Cdc42p activators. However, both deletion and overexpression of either gef1(+) or scd1(+) causes different morphological phenotypes, which suggest different functions. Genetic evidence revealed a link between Gef1p and the signaling pathway of Shk1/Orb2p and Orb6p. In contrast, no genetic interaction between Gef1p and Shk2p-Mkh1p pathway was observed.  相似文献   

4.
Polarized cell growth requires the coupling of a defined spatial site on the cell cortex to the apparatus that directs the establishment of cell polarity. In the budding yeast Saccharomyces cerevisiae, the Ras-family GTPase Rsr1p/Bud1p and its regulators select the proper site for bud emergence on the cell cortex. The Rho-family GTPase Cdc42p and its associated proteins then establish an axis of polarized growth by triggering an asymmetric organization of the actin cytoskeleton and secretory apparatus at the selected bud site. We explored whether a direct linkage exists between the Rsr1p/Bud1p and Cdc42p GTPases. Here we show specific genetic interactions between RSR1/BUD1 and particular cdc42 mutants defective in polarity establishment. We also show that Cdc42p coimmunoprecipitated with Rsr1p/Bud1p from yeast extracts. In vitro studies indicated a direct interaction between Rsr1p/Bud1p and Cdc42p, which was enhanced by Cdc24p, a guanine nucleotide exchange factor for Cdc42p. Our findings suggest that Cdc42p interacts directly with Rsr1p/Bud1p in vivo, providing a novel mechanism by which direct contact between a Ras-family GTPase and a Rho-family GTPase links the selection of a growth site to polarity establishment.  相似文献   

5.
In budding yeast, the Rho-type GTPase Cdc42p is essential for cell division and regulates pseudohyphal development and invasive growth. Here, we isolated novel Cdc42p mutant proteins with single-amino-acid substitutions that are sufficient to uncouple functions of Cdc42p essential for cell division from regulatory functions required for pseudohyphal development and invasive growth. In haploid cells, Cdc42p is able to regulate invasive growth dependent on and independent of FLO11 gene expression. In diploid cells, Cdc42p regulates pseudohyphal development by controlling pseudohyphal cell (PH cell) morphogenesis and invasive growth. Several of the Cdc42p mutants isolated here block PH cell morphogenesis in response to nitrogen starvation without affecting morphology or polarity of yeast form cells in nutrient-rich conditions, indicating that these proteins are impaired for certain signaling functions. Interaction studies between development-specific Cdc42p mutants and known effector proteins indicate that in addition to the p21-activated (PAK)-like protein kinase Ste20p, the Cdc42p/Rac-interactive-binding domain containing Gic1p and Gic2p proteins and the PAK-like protein kinase Skm1p might be further effectors of Cdc42p that regulate pseudohyphal and invasive growth.  相似文献   

6.
Cdc42 GTPase is required for polarization in eukaryotic cells, but its spatial regulation is poorly understood. In Schizosaccharomyces pombe, Cdc42p is activated by Scd1p and Gef1p, two guanine-nucleotide exchange factors. Two-hybrid screening identified Hob3p as a Gef1p binding partner. Hob3p is a BAR domain-containing protein ortholog of human Bin3. Hob3p also interacts directly with Cdc42p independently of Gef1p. Hob3p, Cdc42p and Gef1p form a complex, and Hob3p facilitates Gef1p-Cdc42p interaction and activation. Hob3p forms a ring in the division area, similar to that of Gef1p. This localization requires actin polymerization and Cdc15p but is independent of the septation initiation network. Hob3p is required for the concentration of Cdc42p to the division area. The actomyosin ring contraction is slower in hob3Delta than in wild-type cells, and this contributes to its cytokinesis defect. Moreover, this report extends previous evidence that human Bin3 suppresses the cytokinesis phenotype of hob3Delta cells, showing that Bin3 can partially recover the GTP-Cdc42p level and its localization. These results suggest that Hob3p is required to recruit and activate Cdc42p at the cell division site and that this function might be conserved in other eukaryotes.  相似文献   

7.
Cell polarization occurs along a single axis that is generally determined by a spatial cue. Cells of the budding yeast exhibit a characteristic pattern of budding, which depends on cell-type-specific cortical markers, reflecting a genetic programming for the site of cell polarization. The Cdc42 GTPase plays a key role in cell polarization in various cell types. Although previous studies in budding yeast suggested positive feedback loops whereby Cdc42 becomes polarized, these mechanisms do not include spatial cues, neglecting the normal patterns of budding. Here we combine live-cell imaging and mathematical modeling to understand how diploid daughter cells establish polarity preferentially at the pole distal to the previous division site. Live-cell imaging shows that daughter cells of diploids exhibit dynamic polarization of Cdc42-GTP, which localizes to the bud tip until the M phase, to the division site at cytokinesis, and then to the distal pole in the next G1 phase. The strong bias toward distal budding of daughter cells requires the distal-pole tag Bud8 and Rga1, a GTPase activating protein for Cdc42, which inhibits budding at the cytokinesis site. Unexpectedly, we also find that over 50% of daughter cells lacking Rga1 exhibit persistent Cdc42-GTP polarization at the bud tip and the distal pole, revealing an additional role of Rga1 in spatiotemporal regulation of Cdc42 and thus in the pattern of polarized growth. Mathematical modeling indeed reveals robust Cdc42-GTP clustering at the distal pole in diploid daughter cells despite random perturbation of the landmark cues. Moreover, modeling predicts different dynamics of Cdc42-GTP polarization when the landmark level and the initial level of Cdc42-GTP at the division site are perturbed by noise added in the model.  相似文献   

8.
Cells of the budding yeast Saccharomyces cerevisiae are born carrying localized transmembrane landmark proteins that guide the subsequent establishment of a polarity axis and hence polarized growth to form a bud in the next cell cycle. In haploid cells, the relevant landmark proteins are concentrated at the site of the preceding cell division, to which they recruit Cdc24, the guanine nucleotide exchange factor for the conserved polarity regulator Cdc42. However, instead of polarizing at the division site, the new polarity axis is directed next to but not overlapping that site. Here, we show that the Cdc42 guanosine triphosphatase–activating protein (GAP) Rga1 establishes an exclusion zone at the division site that blocks subsequent polarization within that site. In the absence of localized Rga1 GAP activity, new buds do in fact form within the old division site. Thus, Cdc42 activators and GAPs establish concentric zones of action such that polarization is directed to occur adjacent to but not within the previous cell division site.  相似文献   

9.
BACKGROUND: In the fission yeast Schizosaccharomyces pombe, cell growth takes place exclusively at both ends of the cylindrical cell. During this highly polarized growth, microtubules are responsible for the placement of the cell-end marker proteins, the Tea1-Tea4/Wsh3 complex, which recruits the Pom1 DYRK-family protein kinase. Pom1 is required for proper positioning of growth sites, and the Deltapom1 mutation brings about monopolar cell growth. RESULTS: Pom1 kinase physically interacts with Rga4, which has a GAP (GTPase-activating protein) domain for Rho-family GTPase. Genetic and biochemical evidence indicates that Rga4 functions as GAP for the Cdc42 GTPase, an evolutionarily conserved regulator of F-actin. CRIB (Cdc42/Rac interactive binding)-GFP microscopy has revealed that GTP-bound, active Cdc42 is concentrated to growing cell ends accompanied by developed F-actin structures, where the Rga4 GAP is excluded. The monopolar Deltapom1 mutant fails to eliminate Rga4 from the nongrowing cell end, resulting in monopolar distribution of GTP-Cdc42 to the growing cell end. However, mutational inactivation of Rga4 allows Cdc42 to be active at both ends of Deltapom1 cells, suggesting that mislocalization of Rga4 in the Deltapom1 mutant contributes to its monopolar phenotype. CONCLUSIONS: Pom1 kinase recruited to cell ends by the Tea1-Tea4/Wsh3 complex is essential for proper localization of a GAP for Cdc42, Rga4, which ensures bipolar localization of GTP-bound, active Cdc42. Because of the established role of Cdc42 in F-actin formation, these observations provide a new insight into how the microtubule system achieves localized formation of F-actin to generate cell polarity.  相似文献   

10.
Lipid asymmetry at the plasma membrane is essential for such processes as cell polarity, cytokinesis and phagocytosis. Here we find that a lipid flippase complex, composed of Lem3, Dnf1 or Dnf2, has a role in the dynamic recycling of the Cdc42 GTPase, a key regulator of cell polarity, in yeast. By using quantitative microscopy methods, we show that the flippase complex is required for fast dissociation of Cdc42 from the polar cortex by the guanine nucleotide dissociation inhibitor. A loss of flippase activity, or pharmacological blockage of the inward flipping of phosphatidylethanolamine, a phospholipid with a neutral head group, disrupts Cdc42 polarity maintained by guanine nucleotide dissociation inhibitor-mediated recycling. Phosphatidylethanolamine flipping may reduce the charge interaction between a Cdc42 carboxy-terminal cationic region with the plasma membrane inner leaflet, enriched for the negatively charged lipid phosphatidylserine. Using a reconstituted system with supported lipid bilayers, we show that the relative composition of phosphatidylethanolamine versus phosphatidylserine directly modulates Cdc42 extraction from the membrane by guanine nucleotide dissociation inhibitor.  相似文献   

11.
Establishment of cell polarity is important for a wide range of biological processes, from asymmetric cell growth in budding yeast to neurite formation in neurons. In the yeast Saccharomyces cerevisiae, the small GTPase Cdc42 controls polarized actin organization and exocytosis toward the bud. Gic2, a Cdc42 effector, is targeted to the bud tip and plays an important role in early bud formation. The GTP-bound Cdc42 interacts with Gic2 through the Cdc42/Rac interactive binding domain located at the N terminus of Gic2 and activates Gic2 during bud emergence. Here we identify a polybasic region in Gic2 adjacent to the Cdc42/Rac interactive binding domain that directly interacts with phosphatidylinositol 4,5-bisphosphate in the plasma membrane. We demonstrate that this interaction is necessary for the polarized localization of Gic2 to the bud tip and is important for the function of Gic2 in cell polarization. We propose that phosphatidylinositol 4,5-bisphosphate and Cdc42 act in concert to regulate polarized localization and function of Gic2 during polarized cell growth in the budding yeast.  相似文献   

12.
Yeast cells can initiate bud formation at the G1/S transition in a cue-independent manner. Here, we investigate the dynamic nature of the polar cap and the regulation of the GTPase Cdc42 in the establishment of cell polarity. Using analysis of fluorescence recovery after photobleaching, we found that Cdc42 exchanged rapidly between the polar caps and cytosol and that this rapid exchange required its GTPase cycle. A previously proposed positive feedback loop involving actomyosin-based transport of the Cdc42 GTPase is required for the generation of robust cell polarity during bud formation in yeast. Inhibition of actin-based transport resulted in unstable Cdc42 polar caps. Unstable polarity was also observed in mutants lacking Bem1, a protein previously implicated in a feedback loop for Cdc42 activation through a signaling pathway. When Bem1 and actin were both inhibited, polarization completely failed. These results suggest that cell polarity is established through coupling of transport and signaling pathways and maintained actively by balance of flux.  相似文献   

13.
Cell polarization is a prerequisite for essential processes such as cell migration, proliferation or differentiation. The yeast Saccharomyces cerevisiae under control of the GTPase Cdc42 is able to polarize without the help of cytoskeletal structures and spatial cues through a pathway depending on its guanine nucleotide dissociation inhibitor (GDI) Rdi1. To develop a fundamental understanding of yeast polarization we establish a detailed mechanistic model of GDI-mediated polarization. We show that GDI-mediated polarization provides precise spatial and temporal control of Cdc42 signaling and give experimental evidence for our findings. Cell cycle induced changes of Cdc42 regulation enhance positive feedback loops of active Cdc42 production, and thereby allow simultaneous switch-like regulation of focused polarity and Cdc42 activation. This regulation drives the direct formation of a unique polarity cluster with characteristic narrowing dynamics, as opposed to the previously proposed competition between transient clusters. As the key components of the studied system are conserved among eukaryotes, we expect our findings also to apply to cell polarization in other organisms.  相似文献   

14.
Rho GTPases, activated by Rho guanine nucleotide exchange factors (GEFs), are conserved molecular switches for signal transductions that regulate diverse cellular processes, including cell polarization and cytokinesis. The fission yeast Schizosaccharomyces pombe has six Rho GTPases (Cdc42 and Rho1–Rho5) and seven Rho GEFs (Scd1, Rgf1–Rgf3, and Gef1–Gef3). The GEFs for Rho2–Rho5 have not been unequivocally assigned. In particular, Gef3, the smallest Rho GEF, was barely studied. Here we show that Gef3 colocalizes with septins at the cell equator. Gef3 physically interacts with septins and anillin Mid2 and depends on them to localize. Gef3 coprecipitates with GDP-bound Rho4 in vitro and accelerates nucleotide exchange of Rho4, suggesting that Gef3 is a GEF for Rho4. Consistently, Gef3 and Rho4 are in the same genetic pathways to regulate septum formation and/or cell separation. In gef3∆ cells, the localizations of two potential Rho4 effectors—glucanases Eng1 and Agn1—are abnormal, and active Rho4 level is reduced, indicating that Gef3 is involved in Rho4 activation in vivo. Moreover, overexpression of active Rho4 or Eng1 rescues the septation defects of mutants containing gef3∆. Together our data support that Gef3 interacts with the septin complex and activates Rho4 GTPase as a Rho GEF for septation in fission yeast.  相似文献   

15.
The GTPase Cdc42p is essential for polarity establishment in animals and fungi.1 Human Cdc42p can functionally replace yeast Cdc42p,2 indicating a high degree of evolutionary conservation. Current models of Cdc42p action generally follow the signaling paradigm established for Ras, in which receptors responding to an initiating stimulus cause guanine nucleotide exchange factors (GEFs) to trigger GTP-loading of Ras, leading to engagement of downstream effectors and ensuing cell proliferation. Key support for the Ras paradigm came from the finding that oncogenic forms of Ras, unable to hydrolyze GTP and therefore constitutively GTP-bound, mimicked the effect of constitutive signaling by the upstream receptors even in the absence of stimuli. Attempts to assess whether or not this paradigm is valid for Cdc42p-induced polarization of yeast cells have yielded conflicting results.3-6 Here, we discuss the available information on this issue and conclude that unlike Ras signaling, Cdc42p directed polarity establishment additionally requires cycling between GTP- and GDP-bound forms. We suggest that such cycling is critical for a little-studied “function” of Cdc42p: its ability to designate a unique portion of the cell cortex to become the polarization site, and to become concentrated at that site.  相似文献   

16.
BACKGROUND: Mammalian Scribble (Scrib) plays a conserved role in polarization of epithelial and neuronal cells. Polarization is essential for migration of a variety of cell types; however, the function of Scrib in this context remains unclear. Scrib has been shown to interact with betaPIX, a guanine nucleotide exchange factor for the small GTPases Rac and Cdc42. Cdc42 controls cell polarity from yeast to mammals during asymmetric cell division and epithelial cell polarization, as well as during cell migration. Cdc42 is, in particular, required for polarization and orientation of astrocytes in a scratch-induced polarized migration assay. Using this assay, we characterized Scrib function during polarized cell migration. RESULTS: Depletion of Scrib by siRNA or expression of dominant-negative constructs inhibits astrocyte polarization. Like Cdc42, Scrib controls protrusion formation, cytoskeleton polarization, and centrosome and Golgi reorientation. Scrib interacts and colocalizes with betaPIX at the front edge of polarizing astrocytes. Perturbation of Scrib localization or of Scrib-betaPIX interaction inhibits betaPIX polarized recruitment. We further show that betaPIX is required for astrocyte polarization and that both the Scrib-binding motif and the GEF activity of betaPIX are essential for its function. Scrib and betaPIX control Cdc42 activation and localization during astrocyte polarization. Thereby, Scrib regulates Cdc42-dependent APC and Dlg1 recruitment to the leading edge to promote cell orientation. CONCLUSION: We conclude that Scrib plays a key role in the establishment of cell polarity during migration. By interacting with betaPIX, Scrib controls localization and activation of the small GTPase Cdc42 and regulates Cdc42-dependent polarization pathways.  相似文献   

17.
Generation of cellular asymmetry or cell polarity plays a critical role in cell-cycle-regulated morphogenetic processes involving the actin cytoskeleton. The GTPase Cdc42 regulates actin rearrangements and signal transduction pathways in all eukaryotic cells [1], and the temporal and spatial regulation of Cdc42p depends on the activity and targeting of its guanine-nucleotide exchange factor (GEF). Cdc24p, the Saccharomyces cerevisiae GEF for Cdc42p, is found in a particulate fraction and localizes to the plasma membrane [2] [3] at sites of polarized growth [4]. We show that Cdc24p labeled with green fluorescent protein (GFP-Cdc24p) was targeted to pre-bud sites, the tips and sides of enlarging buds, and mating projections in pheromone-treated cells. Unexpectedly, GFP-Cdc24p also localized to the nucleus and GFP-Cdc24p levels diminished before nuclear division followed by its reappearance in divided nuclei and mother-bud necks during cytokinesis. The Cdc24p amino-terminal 283 amino acids were necessary and sufficient for nuclear localization, which depended on the cyclin-dependent-kinase inhibitor Far1p. The Cdc24p carboxy-terminal 289 amino acids were necessary and sufficient for targeting to the pre-bud site, bud, mother-bud neck, and mating projection. Targeting was independent of the Cdc24p-binding proteins Far1p, the GTPase Rsr1p/Bud1p, the scaffold protein Bem1p, and the G(beta) subunit Ste4p. These data are consistent with a temporal and spatial regulation of Cdc24p-dependent activation of Cdc42p during the cell cycle.  相似文献   

18.
Cell polarization is key for the function of most eukaryotic cells, and regulates cell shape, migration and tissue architecture. Fission yeast, Schizosaccharomyces pombe cells are cylindrical and polarize cell growth to one or both cell tips dependent on the cell cycle stage. Whereas microtubule cytoskeleton contributes to the positioning of the growth sites by delivering polarity factors to the cell ends, the Cdc42 GTPase polarizes secretion via actin-dependent delivery and tethering of secretory vesicles to plasma membrane. How growth is restricted to cell tips and how re-initiation of tip growth is regulated in the cell cycle remains poorly understood. In this work we investigated the function of protein phosphatase type 2A (PP2A) in S. pombe morphogenesis by deleting the evolutionary conserved PTPA-type regulatory subunit that we named pta2. pta2-deleted cells showed morphological defects and altered growth pattern. Consistent with this, actin patches and active Cdc42 were mislocalized in the pta2 deletion. These defects were additive to the lack of Cdc42-GAP Rga4. pta2Δ cells show upregulated Cdc42 activity and pta2 interacts genetically with polarisome components Tea1, Tea4 and For3 leading to complete loss of cell polarity and rounded morphology. Thus, regulation of polarity by PP2A requires the polarisome and involves Pta2-dependent control of Cdc42 activity.  相似文献   

19.
Cdc42, a highly conserved small GTPase of the Rho family, acts as a molecular switch to modulate a wide range of signaling pathways. Vesicle trafficking and cell polarity are two processes Cdc42 is known to regulate. Although the trafficking and polarity machineries are each well understood, how they interact to cross‐regulate each other in cell polarization is still a mystery. Cdc42 is an interesting candidate that may integrate these two networks within the cell. Here we review findings on the interplay between Cdc42 and trafficking in yeast, Caenorhabditis elegans, Drosophila and mammalian cell culture systems, and discuss recent advances in our understanding of the function of Cdc42 and two of its effectors, the WASp–Arp2/3 and Par complexes, in regulating polarized traffic. Work in yeast suggests that the polarized distribution of Cdc42, which acts here as a key polarity determinant, requires input from multiple processes including endocytosis and recycling. In metazoan cells, Cdc42 can regulate several steps in the biosynthetic as well as endocytotic and recycling pathways. The recent discovery that the Par polarity complex co‐operates with Cdc42 in the regulation of endocytosis and recycling opens exciting possibilities for the integration of polarity protein function and endocytotic machinery.  相似文献   

20.
A role for cell polarity proteins in mitotic exit   总被引:4,自引:0,他引:4  
Höfken T  Schiebel E 《The EMBO journal》2002,21(18):4851-4862
The budding yeast mitotic exit network (MEN) is a signal transduction cascade that controls exit from mitosis by facilitating the release of the cell cycle phosphatase Cdc14 from the nucleolus. The G protein Tem1 regulates MEN activity. The Tem1 guanine nucleotide exchange factor (GEF) Lte1 associates with the cortex of the bud and activates the MEN upon the formation of an anaphase spindle. Thus, the cell cortex has an important but ill-defined role in MEN regulation. Here, we describe a network of conserved cortical cell polarity proteins that have key roles in mitotic exit. The Rho-like GTPase Cdc42, its GEF Cdc24 and its effector Cla4 [a member of the p21-activated kinases (PAKs)] control the initial binding and activation of Lte1 to the bud cortex. Moreover, Cdc24, Cdc42 and Ste20, another PAK, probably function parallel to Lte1 in facilitating mitotic exit. Finally, the cell polarity proteins Kel1 and Kel2 are present in complexes with both Lte1 and Tem1, and negatively regulate mitotic exit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号