首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Migration is an innate and fundamental cellular function that enables hematopoietic stem cells (HSCs) and endothelial progenitors (EPCs) to leave the bone marrow, relocate to distant tissue, and to return to the bone marrow. An increasing number of studies demonstrate the widening scope of the therapeutic potential of both HSCs and endothelial cells. Therapeutic success however not only relies upon their ability to repair damaged tissue, but is also fundamentally dependent on the migration to these areas. Extensive in vivo and in vitro research efforts have shown that the most significant effects seen on HSC migration are initiated by the chemokine SDF-1alpha. In this review we will elucidate the many cellular and systemic factors of HSC and EPC cell migration and their modi operandi.  相似文献   

2.
Henry LK  Defelice LJ  Blakely RD 《Neuron》2006,49(6):791-796
Efforts to define the mechanisms governing neurotransmitter uptake and drug action have moved into high gear with the publication of a high-resolution structure of a leucine transporter from Aquifex aeolicus, a bacterial member of the SLC6 transporter family. Solved with the substrate leucine bound, the new structure corroborates extensive biochemical and mutagenesis studies performed with related mammalian neurotransmitter transporters and provides exciting suggestions as to how coupling arises between ions and substrates to permit efficient neurotransmitter clearance.  相似文献   

3.
Asparagine-linked protein glycosylation is a prevalent protein modification reaction in eukaryotic systems. This process involves the co-translational transfer of a pre-assembled tetradecasaccharide from a dolichyl-pyrophosphate donor to the asparagine side chain of nascent proteins at the endoplasmic reticulum (ER) membrane. Recently, the first such system of N-linked glycosylation was discovered in the Gram-negative bacterium, Campylobacter jejuni. Glycosylation in this organism involves the transfer of a heptasaccharide from an undecaprenyl-pyrophosphate donor to the asparagine side chain of proteins at the bacterial periplasmic membrane. Here we provide a detailed comparison of the machinery involved in the N-linked glycosylation systems of eukaryotic organisms, exemplified by the yeast Saccharomyces cerevisiae, with that of the bacterial system in C. jejuni. The two systems display significant similarities and the relative simplicity of the bacterial glycosylation process could provide a model system that can be used to decipher the complex eukaryotic glycosylation machinery.  相似文献   

4.
Hu  Haoyu  Shen  Xiaofeng  Liao  Baosheng  Luo  Lu  Xu  Jiang  Chen  Shilin 《中国科学:生命科学英文版》2019,62(7):913-920
From the prehistoric era until the publishing of the Compendium of Materia Medica and the first scientific Nobel Prize in the Chinese mainland for Tu's discovery on anti-malarial tablets, each milestone and stepping stone in the developmental history of herbal medicine involved intrepid exploration, bold hypothesis formulation, and cautious verification. After thousands of years of discovery and development, herbal research has entered a new era—the era of herbgenomics. Herbgenomics combines herbal and genomic research, bridging the gap between traditional herbal medicine and cutting-edge omics studies. Therefore, it provides a general picture of the genetic background of traditional herbs, enabling researchers to investigate the mechanisms underlying the prevention and treatment of human diseases from an omics perspective.  相似文献   

5.
An alignment of the mammalian ABCA transporters enabled the identification of sequence segments, specific to the ABCA subfamily, which were used as queries to search for eukaryotic and prokaryotic homologues. Thirty-seven eukaryotic half and full-length transporters were found, and a close relationship with prokaryotic subfamily 7 transporters was detected. Each half of the ABCA full-transporters is predicted to comprise a membrane-spanning domain (MSD) composed of six helices and a large extracellular loop, followed by a nucleotide-binding domain (NBD) and a conserved cytoplasmic 80-residue sequence, which might have a regulatory function. The topology predicted for the ABCA transporters was compared to the crystal structures of the MsbA and BtuCD bacterial transporters. The alignment of the MSD and NBD domains provided an estimate of the degree of residue conservation in the cytoplasmic, extracellular and transmembrane domains of the ABCA transporter subfamily. The phylogenic tree of eukaryotic ABCA transporters based upon the NBD sequences, consists of three major clades, corresponding to the half-transporter single NBDs and to the full-transporter NBDls and NBD2s. A phylogenic tree of prokaryotic transporters and the eukaryotic ABCA transporters confirmed the evolutionary relationship between prokaryotic subfamily 7 transporters and eukaryotic ABCA half and full-transporters.  相似文献   

6.
The major facilitator superfamily (MFS) of transporters represents the largest family of secondary active transporters and has a diverse range of substrates. With structural information for four MFS transporters, we can see a strong structural commonality suggesting, as predicted, a common architecture for MFS transporters. The rate for crystal structure determination of MFS transporters is slow, making modeling of both prokaryotic and eukaryotic transporters more enticing. In this review, models of eukaryotic transporters Glut1, G6PT, OCT1, OCT2 and Pho84, based on the crystal structures of the prokaryotic GlpT, based on the crystal structure of LacY are discussed. The techniques used to generate the different models are compared. In addition, the validity of these models and the strategy of using prokaryotic crystal structures to model eukaryotic proteins are discussed. For comparison, E. coli GlpT was modeled based on the E. coli LacY structure and compared to the crystal structure of GlpT demonstrating that experimental evidence is essential for accurate modeling of membrane proteins.  相似文献   

7.
Abstract

Membrane proteins are intrinsically involved in both human and pathogen physiology, and are the target of 60% of all marketed drugs. During the past decade, advances in the studies of membrane proteins using X-ray crystallography, electron microscopy and NMR-based techniques led to the elucidation of over 250 unique membrane protein crystal structures. The aim of the European Drug Initiative for Channels and Transporter (EDICT) project is to use the structures of clinically significant membrane proteins for the development of lead molecules. One of the approaches used to achieve this is a virtual high-throughput screening (vHTS) technique initially developed for soluble proteins. This paper describes application of this technique to the discovery of inhibitors of the leucine transporter (LeuT), a member of the neurotransmitter:sodium symporter (NSS) family.  相似文献   

8.
9.
Initiation of translation involves a complex series of reactions that result in the formation of an initiation complex at the proper start site of the mRNA. These reactions, particularly those that involve the binding of the mRNA to the small subunit of the ribosome, are not fully understood. Here we show that one of the factors (W2) required to reconstitute translation in E. coli is encoded by the deaD gene which harbors 87% amino acid sequence similarly to the eukaryotic (eIF4A). Antibodies against the eukaryotic eIF4A cross-react with the E. coli protein. We describe the overexpression of the W2 protein from recombinant clones and its purification in one step by the use of a His tag at the N-terminus of its sequence. We report a rapid assay for the W2 protein that scores for initiation and elongation programmed by a native mRNA template. The W2 protein promotes initiation programmed by the mRNA that harbors secondary structures. The W2 protein is not required in standard initiation assays programmed by synthetic mRNAs of defined sequence that lack this feature. We conclude that W2 is an important factor for initiation in eukaryotic and prokaryotic cells.  相似文献   

10.
H Wang  E Gouaux 《EMBO reports》2012,13(9):861-866
LeuT serves as the model protein for understanding the relationships between structure, mechanism and pharmacology in neurotransmitter sodium symporters (NSSs). At the present time, however, there is a vigorous debate over whether there is a single high-affinity substrate site (S1) located at the original, crystallographically determined substrate site or whether there are two high-affinity substrates sites, one at the primary or S1 site and the other at a second site (S2) located at the base of the extracellular vestibule. In an effort to address the controversy over the number of high-affinity substrate sites in LeuT, one group studied the F253A mutant of LeuT and asserted that in this mutant substrate binds exclusively to the S2 site and that 1 mM clomipramine entirely ablates substrate binding to the S2 site. Here we study the binding of substrate to the F253A mutant of LeuT using ligand binding and X-ray crystallographic methods. Both experimental methods unambiguously show that substrate binds to the S1 site of the F253A mutant and that binding is retained in the presence of 1 mM clomipramine. These studies, in combination with previous work, are consistent with a mechanism for LeuT that involves a single high-affinity substrate binding site.  相似文献   

11.
MRD is a database system to access the microsatellite repeats information of genomes such as archea, eubacteria, and other eukaryotic genomes whose sequence information is available in public domains. MRD stores information about simple tandemly repeated k-mer sequences where k= 1 to 6, i.e. monomer to hexamer. The web interface allows the users to search for the repeat of their interest and to know about the association of the repeat with genes and genomic regions in the specific organism. The data contains the abundance and distribution of microsatellites in the coding and non-coding regions of the genome. The exact location of repeats with respect to genomic regions of interest (such as UTR, exon, intron or intergenic regions) whichever is applicable to organism is highlighted. MRD is available on the World Wide Web at and/or . The database is designed as an open-ended system to accommodate the microsatellite repeats information of other genomes whose complete sequences will be available in future through public domain.  相似文献   

12.
Indarte M  Madura JD  Surratt CK 《Proteins》2008,70(3):1033-1046
Pharmacological and behavioral studies indicate that binding of cocaine and the amphetamines by the dopamine transporter (DAT) protein is principally responsible for initiating the euphoria and addiction associated with these drugs. The lack of an X-ray crystal structure for the DAT or any other member of the neurotransmitter:sodium symporter (NSS) family has hindered understanding of psychostimulant recognition at the atomic level; structural information has been obtained largely from mutagenesis and biophysical studies. The recent publication of a crystal structure for the bacterial leucine transporter LeuT(Aa), a distantly related NSS family homolog, provides for the first time a template for three-dimensional comparative modeling of NSS proteins. A novel computational modeling approach using the capabilities of the Molecular Operating Environment program MOE 2005.06 in conjunction with other comparative modeling servers generated the LeuT(Aa)-directed DAT model. Probable dopamine and amphetamine binding sites were identified within the DAT model using multiple docking approaches. Binding sites for the substrate ligands (dopamine and amphetamine) overlapped substantially with the analogous region of the LeuT(Aa) crystal structure for the substrate leucine. The docking predictions implicated DAT side chains known to be critical for high affinity ligand binding and suggest novel mutagenesis targets in elucidating discrete substrate and inhibitor binding sites. The DAT model may guide DAT ligand QSAR studies, and rational design of novel DAT-binding therapeutics.  相似文献   

13.
Datta B 《Biochimie》2000,82(2):95-107
Methionine aminopeptidases (MAPs) play important roles in protein processing. MAPs from various organisms, for example E. coli, S. typhimurium, P. furiosus, Saccharomyces cerevisiae, and porcine have been purified to homogeneity and their MAP activities have been tested in vitro and in vivo. The DNA sequence analyses of MAP genes from the above organisms reveal sequence homologies with other prokaryotic MAPs as well as with various eukaryotic homologues of rat p67. The cellular glycoprotein, p67 protects the alpha-subunit of eukaryotic initiation factor 2 (eIF2) from phosphorylation by its kinases. We call this POEP (protection of eIF2alpha phosphorylation) activity of p67. The POEP activity of p67 is observed in different stress-related situations such as during heme-deficiency of reticulocytes, serum starvation and heat-shock of mammalian cells, vaccinia virus infection of mammalian cells, baculovirus infection of insect cells, mitosis, apoptosis, and possibly during normal cell growth. The POEP activity of p67 is regulated by an enzyme, called p67-deglycosylase (p67-DG). When active, p67-DG inactivates p67 by removing its carbohydrate moieties. Remarkable amino acid sequence similarities at the C-terminus of rat p67 with its eukaryotic and prokaryotic homologues which have MAP activities, raise several important questions: i) does rat p67 have MAP activity?; and ii) if it does have MAP activity, how the two activities (POEP and MAP) of p67 are used by mammalian cells during their growth and differentiation. In this review, discussions have been made to evaluate both POEP and MAP activities of p67 and their possible involvement during normal growth and cancerous growth of mammalian cells.  相似文献   

14.
15.
A comparative overview of the subunit taxonomy and sequences of eukaryotic and prokaryotic RNA polymerases indicates the presence of a core structure conserved between both sets of enzymes. The differentiation between prokaryotic and eukaryotic polymerases is ascribed to domains and subunits peripheral to the largely conserved central structure. Possible subunit and domain functions are outlined. The core's flexible shape is largely determined by the elongated architecture of the two largest subunits, which can be oriented along the DNA axis with their bulkier amino-terminal head regions looking towards the 3' end of the gene to be transcribed and their more slender carboxyl-terminal domains at the tail end of the enzyme. The two largest prokaryotic subunits appear originally derived from a single gene.  相似文献   

16.
MOTIVATION: The folding of many proteins in vivo and in vitro is assisted by molecular chaperones. A well-characterized molecular chaperone system is the chaperonin GroEL/GroES from Escherichia coli which has a homolog found in the eukaryotic cytosol called CCT. All chaperonins have a ring structure with a cavity in which the substrate protein folds. An interesting difference between prokaryotic and eukaryotic chaperonins is in the nature of the ATP-mediated conformational changes that their ring structures undergo during their reaction cycle. Prokaryotic chaperonins are known to exhibit a highly cooperative concerted change of their cavity surface while in eukaryotic chaperonins the change is sequential. Approximately 70% of proteins in eukaryotic cells are multi-domain whereas in prokaryotes single-domain proteins are more common. Thus, it was suggested that the different modes of action of prokaryotic and eukaryotic chaperonins can be explained by the need of eukaryotic chaperonins to facilitate folding of multi-domain proteins. RESULTS: Using a 2D square lattice model, we generated two large populations of single-domain and double-domain substrate proteins. Chaperonins were modeled as static structures with a cavity wall with which the substrate protein interacts. We simulated both concerted and sequential changes of the cavity surfaces and demonstrated that folding of single-domain proteins benefits from concerted but not sequential changes whereas double-domain proteins benefit also from sequential changes. Thus, our results support the suggestion that the different modes of allosteric switching of prokaryotic and eukaryotic chaperonin rings have functional implications as it enables eukaryotic chaperonins to better assist multi-domain protein folding.  相似文献   

17.
The major facilitator superfamily (MFS) of transporters represents the largest family of secondary active transporters and has a diverse range of substrates. With structural information for four MFS transporters, we can see a strong structural commonality suggesting, as predicted, a common architecture for MFS transporters. The rate for crystal structure determination of MFS transporters is slow, making modeling of both prokaryotic and eukaryotic transporters more enticing. In this review, models of eukaryotic transporters Glut1, G6PT, OCT1, OCT2 and Pho84, based on the crystal structures of the prokaryotic GlpT, based on the crystal structure of LacY are discussed. The techniques used to generate the different models are compared. In addition, the validity of these models and the strategy of using prokaryotic crystal structures to model eukaryotic proteins are discussed. For comparison, E. coli GlpT was modeled based on the E. coli LacY structure and compared to the crystal structure of GlpT demonstrating that experimental evidence is essential for accurate modeling of membrane proteins.  相似文献   

18.
《Fly》2013,7(4):302-305
During exocytosis, classical and amino acid neurotransmitters are released from the lumen of synaptic vesicles to allow signaling at the synapse. The storage of neurotransmitters in synaptic vesicles and other types of secretory vesicles requires the activity of specific vesicular transporters. Glutamate and monoamines such as dopamine are packaged by VGLUTs and VMATs respectively. Changes in the localization of either protein have the potential to up- or down regulate neurotransmitter release, and some of the mechanisms for sorting these proteins to secretory vesicles have been investigated in cultured cells in vitro. We have used Drosophila molecular genetic techniques to study vesicular transporter trafficking in an intact organism and have identified a motif required for localizing Drosophila VMAT (DVMAT) to synaptic vesicles in vivo. In contrast to DVMAT, large deletions of Drosophila VGLUT (DVGLUT) show relatively modest deficits in localizing to synaptic vesicles, suggesting that DVMAT and DVGLUT may undergo different modes of trafficking at the synapse. Further in vivo studies of DVMAT trafficking mutants will allow us to determine how changes in the localization of vesicular transporters affect the nervous system as a whole and complex behaviors mediated by aminergic circuits.  相似文献   

19.
Structural bioinformatics of membrane proteins is still in its infancy, and the picture of their fold space is only beginning to emerge. Because only a handful of three-dimensional structures are available, sequence comparison and structure prediction remain the main tools for investigating sequence-structure relationships in membrane protein families. Here we present a comprehensive analysis of the structural families corresponding to α-helical membrane proteins with at least three transmembrane helices. The new version of our CAMPS database (CAMPS 2.0) covers nearly 1300 eukaryotic, prokaryotic, and viral genomes. Using an advanced classification procedure, which is based on high-order hidden Markov models and considers both sequence similarity as well as the number of transmembrane helices and loop lengths, we identified 1353 structurally homogeneous clusters roughly corresponding to membrane protein folds. Only 53 clusters are associated with experimentally determined three-dimensional structures, and for these clusters CAMPS is in reasonable agreement with structure-based classification approaches such as SCOP and CATH. We therefore estimate that ~1300 structures would need to be determined to provide a sufficient structural coverage of polytopic membrane proteins. CAMPS 2.0 is available at http://webclu.bio.wzw.tum.de/CAMPS2.0/.  相似文献   

20.
Campbell JD  Sansom MS 《FEBS letters》2005,579(19):4193-4199
Transport by ABC proteins requires a cycle of ATP-driven conformational changes of the nucleotide binding domains (NBDs). We compare three molecular dynamics simulations of dimeric MJ0796: with ATP was present at both NBDs; with ATP at one NBD but ADP at the other; and without any bound ATP. In the simulation with ATP present at both NBDs, the dimeric protein interacts with the nucleotides in a symmetrical manner. However, if ADP is present at one binding site then both NBD-NBD and protein-ATP interactions are enhanced at the opposite site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号