首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Mechanisms contributing to the maintenance of heterochromatin in proliferating cells are poorly understood. We demonstrate that chromatin assembly factor 1 (CAF-1) binds to mouse HP1 proteins via an N-terminal domain of its p150 subunit, a domain dispensable for nucleosome assembly during DNA replication. Mutations in p150 prevent association with HP1 in heterochromatin in cells that are not in S phase and the formation of CAF-1-HP1 complexes in nascent chromatin during DNA replication in vitro. We suggest that CAF-1 p150 has a heterochromatin-specific function distinct from its nucleosome assembly function during S phase. Just before mitosis, CAF-1 p150 and some HP1 progressively dissociate from heterochromatin concomitant with histone H3 phosphorylation. The HP1 proteins reassociate with chromatin at the end of mitosis, as histone H3 is dephosphorylated.  相似文献   

3.
4.
During chromosome duplication, it is essential to replicate not only the DNA sequence, but also the complex nucleoprotein structures of chromatin. Pericentric heterochromatin is critical for silencing repetitive elements and plays an essential structural role during mitosis. However, relatively little is understood about its assembly and maintenance during replication. The Mi2/NuRD chromatin remodeling complex tightly associates with actively replicating pericentric heterochromatin, suggesting a role in its assembly. Here we demonstrate that depletion of the catalytic ATPase subunit CHD4/Mi-2β in cells with a dampened DNA damage response results in a slow-growth phenotype characterized by delayed progression through S phase. Furthermore, we observe defects in pericentric heterochromatin maintenance and assembly. Our data suggest that chromatin assembly defects are sensed by an ATM-dependent intra-S phase chromatin quality checkpoint, resulting in a temporal block to the transition from early to late S phase. These findings implicate Mi-2β in the maintenance of chromatin structure and proper cell cycle progression.  相似文献   

5.
6.
The initiation of DNA replication in S phase requires the prior assembly of an origin recognition complex (ORC)-dependent pre-replicative complex on chromatin during G1 phase of the cell division cycle. In human cells, the Orc2 subunit localized to the nucleus as expected, but it also localized to centrosomes throughout the entire cell cycle. Furthermore, Orc2 was tightly bound to heterochromatin and heterochromatin protein 1alpha (HP1alpha) and HP1beta in G1 and early S phase, but during late S, G2 and M phases tight chromatin association was restricted to centromeres. Depletion of Orc2 by siRNA caused multiple phenotypes. A population of cells showed an S-phase defect with little proliferating cell nuclear antigen (PCNA) on chromatin, although MCM proteins remained. Orc2 depletion also disrupted HP1 localization, but not histone-H3-lysine-9 methylation at prominent heterochromatic foci. Another subset of Orc2-depleted cells containing replicated DNA arrested with abnormally condensed chromosomes, failed chromosome congression and multiple centrosomes. These results implicate Orc2 protein in chromosome duplication, chromosome structure and centrosome copy number control, suggesting that it coordinates all stages of the chromosome inheritance cycle.  相似文献   

7.
8.
What drives the dramatic changes in chromosome structure during the cell cycle is one of the oldest questions in genetics. During mitosis, all chromosomes become highly condensed and, as the cell completes mitosis, most of the chromatin decondenses again. Only chromosome regions containing constitutive or facultative heterochromatin remain in a more condensed state throughout interphase. One approach to understanding chromosome condensation is to experimentally induce condensation defects. 5-Azacytidine (5-aza-C) and 5-azadeoxycytidine (5-aza-dC) drastically inhibit condensation in mammalian constitutive heterochromatin, in particular in human chromosomes 1, 9, 15, 16, and Y, as well as in facultative heterochromatin (inactive X chromosome), when incorporated into late-replicating DNA during the last hours of cell culture. The decondensing effects of 5-aza-C analogs, which do not interfere with normal base pairing in substituted duplex DNA, have been correlated with global DNA hypomethylation. In contrast, decondensation of constitutive heterochromatin by incorporation of 5-iododeoxyuridine (IdU) or other non-demethylating base analogs, or binding of AT-specific DNA ligands, such as berenil and Hoechst 33258, may reflect an altered steric configuration of substituted or minor-groove-bound duplex DNA. Consequently, these compounds exert relatively specific effects on certain subsets of AT-rich constitutive heterochromatin, i.e. IdU on human chromosome 9, berenil on human Y, and Hoechst 33258 on mouse chromosomes, which provide high local concentrations of IdU incorporation sites or DNA-ligand-binding sites. None of these non-demethylating compounds affect the inactive X chromosome condensation. Structural features of chromosomes are largely determined by chromosome-associated proteins. In this light, we propose that both DNA hypomethylation and steric alterations in chromosomal DNA may interfere with the binding of specific proteins or multi-protein complexes that are required for chromosome condensation. The association between chromosome condensation defects, genomic instability, and epigenetic reprogramming is discussed. Chromosome condensation may represent a key ancestral mechanism for modulating chromatin structure that has since been realloted to other nuclear processes.  相似文献   

9.
10.
Studies in organisms belonging to different eukaryotic kingdoms have revealed that the structural state of chromatin is controlled by interactions of DNA, small RNAs and specific proteins, linked to a self-reinforcing complex network of biochemical activities involving histone and DNA modifications and ATP-dependent nucleosome remodeling. However, these findings must now be reinterpreted in light of the recent discovery of the highly dynamic character of interphase chromosomes exemplified by the constant flux of enzymatic and structural proteins through both eu- and heterochromatin and by short- and long-range chromosome movements in the nucleus. The available data on chromosome organization in Arabidopsis thaliana and links between proteins influencing chromatin structure and DNA and histone modifications documented in this model plant provide strong supportive evidence for the dynamic nature of chromosomes.  相似文献   

11.
Within each cell cycle, a cell must ensure that the processes of selection of replication origins (licensing) and initiation of DNA replication are well coordinated to prevent re-initiation of DNA replication from the same DNA segment during the same cell cycle. This is achieved by restricting the licensing process to G1 phase when the prereplicative complexes (preRCs) are assembled onto the origin DNA, while DNA replication is initiated only during S phase when de novo preRC assembly is blocked. Cdt1 is an important member of the preRC complex and its tight regulation through ubiquitin-dependent proteolysis and binding to its inhibitor Geminin ensure that Cdt1 will only be present in G1 phase, preventing relicensing of replication origins. We have recently reported that Cdt1 associates with chromatin in a dynamic way and recruits its inhibitor Geminin onto chromatin in vivo. Here we discuss how these dynamic Cdt1-chromatin interactions and the local recruitment of Geminin onto origins of replication by Cdt1 may provide a tight control of the licensing process in time and in space.  相似文献   

12.
The properties that define centromeres in complex eukaryotes are poorly understood because the underlying DNA is normally repetitive and indistinguishable from surrounding noncentromeric sequences. However, centromeric chromatin contains variant H3-like histones that may specify centromeric regions. Nucleosomes are normally assembled during DNA replication; therefore, we examined replication and chromatin assembly at centromeres in Drosophila cells. DNA in pericentric heterochromatin replicates late in S phase, and so centromeres are also thought to replicate late. In contrast to expectation, we show that centromeres replicate as isolated domains early in S phase. These domains do not appear to assemble conventional H3-containing nucleosomes, and deposition of the Cid centromeric H3-like variant proceeds by a replication-independent pathway. We suggest that late-replicating pericentric heterochromatin helps to maintain embedded centromeres by blocking conventional nucleosome assembly early in S phase, thereby allowing the deposition of centromeric histones.  相似文献   

13.
Polycomb group (PcG) proteins form two distinct complexes, PRC1 and PRC2, to regulate developmental target genes by maintaining the epigenetic state in cells. PRC2 methylates histone H3 at lysine 27 (H3K27), and PRC1 then recognizes methyl-H3K27 to form repressive chromatin. However, it remains unknown how PcG proteins maintain stable and plastic chromatin during cell division. Here we report that PcG-associated chromatin is reproduced in the G(1) phase in post-mitotic cells and is required for subsequent S phase progression. In dividing cells, H3K27 trimethylation (H3K27Me(3)) marked mitotic chromosome arms where PRC2 (Suz12 and Ezh2) co-existed, whereas PRC1 (Bmi1 and Pc2) appeared in distinct foci in the pericentromeric regions. As each PRC complex was increasingly assembled from mitosis to G(1) phase, PRC1 formed H3K27Me(3)-based chromatin intensively during middle and late G(1) phase; this chromatin was highly resistant to in situ nuclease treatment. Thus, the transition from mitosis to G(1) phase is crucial for PcG-mediated chromatin inheritance. Knockdown of Suz12 markedly reduced the amount of H3K27Me(3) on mitotic chromosomes, and as a consequence, PRC1 foci were not fully transmitted to post-mitotic daughter cells. S phase progression was markedly delayed in these Suz12-knockdown cells. The fact that PcG-associated chromatin is reproduced during post-mitotic G(1) phase suggests the possibility that PcG proteins enable their target chromatin to be remodeled in response to stimuli in the G(1) phase.  相似文献   

14.
15.
16.
T Aparicio  D Megías  J Méndez 《Chromosoma》2012,121(5):499-507
In mammalian cells, DNA synthesis takes place at defined nuclear structures termed “replication foci” (RF) that follow the same order of activation in each cell cycle. Intriguingly, immunofluorescence studies have failed to visualize the DNA helicase minichromosome maintenance (MCM) at RF, raising doubts about its physical presence at the sites of DNA synthesis. We have revisited this paradox by pulse-labeling RF during the S phase and analyzing the localization of MCM at labeled DNA in the following cell cycle. Using high-throughput confocal microscopy, we provide direct evidence that MCM proteins concentrate in G1 at the chromosome structures bound to become RF in the S phase. Upon initiation of DNA synthesis, an active “MCM eviction” mechanism contributes to reduce the excess of DNA helicases at RF. Most MCM complexes are released from chromatin, except for a small but detectable fraction that remains at the forks during the S phase, as expected for a replicative helicase.  相似文献   

17.
Sister chromatids of metaphase chromosomes can be differentially stained if the cells have replicated their DNA semiconservatively for two cell cycles in a medium containing 5-bromodeoxyuridine (BrdU). When prematurely condensed chromosomes (PCC) are induced in cells during the second S phase after BrdU is added to the medium, the replicated chromosome segments show sister chromatid differential (SCD) staining. Employing this PCC-SCD system on synchronous and asynchronous Chinese hamster ovary (CHO) cells, we have demonstrated that the replication patterns of the CHO cells can be categorized into G1/S, early, early-mid, mid-late, and late S phase patterns according to the amount of replicated chromosomes. During the first 4 h of the S phase, the replication patterns show SCD staining in chains of small chromosome segments. The amount of replicated chromosomes increase during the mid-late and late S categories (last 4 h). Significantly, small SCD segments are also present during these late intervals of the S phase. Measurements of these replicated segments indicate the presence of characteristic chromosome fragment sizes between 0.2 to 1.2 m in all S phase cells except those at G1/S which contain no SCD fragments. These small segments are operationally defined as chromosome replicating units or chromosomal replicons. They are interpreted to be composed of clusters of molecular DNA replicons. The larger SCD segments in the late S cells may arise by the joining of adjacent chromosomal replicons. Further application of this PCC-SCD method to study the chromosome replication process of two other rodents, Peromyscus eremicus and Microtus agrestis, with peculiar chromosomal locations of heterochromatin has demonstrated an ordered sequence of chromosome replication. The euchromatin and heterochromatin of the two species undergo two separate sequences of decondensation, replication, and condensation during the early-mid and mid-late intervals respectively of the S phase. Similar-sized chromosomal replicons are present in both types of chromatin. These data suggest that mammalian chromosomes are replicated in groups of replicating units, or chromosomal replicons, along their lengths. The organization and structure of these chromosomal replicons with respect to those of the interphase nucleus and metaphase chromosomes are discussed.  相似文献   

18.
Replicating the genome prior to each somatic cell division not only requires precise duplication of the genetic information, but also accurately reestablishing the epigenetic signatures that instruct how the genetic material is to be interpreted in the daughter cells. The mammalian inactive X chromosome (Xi), which is faithfully inherited in a silent state in each daughter cell, provides an excellent model of epigenetic regulation. While much is known about the early stages of X chromosome inactivation, much less is understood with regards to retaining the Xi chromatin through somatic cell division. Here we report that the WSTF-ISWI chromatin remodeling complex (WICH) associates with the Xi during late S-phase as the Xi DNA is replicated. Elevated levels of WICH at the Xi is restricted to late S-phase and appears before BRCA1 and γ-H2A.X. The sequential appearance of WICH and BRCA1/γ-H2A.X implicate each as performing important but distinct roles in the maturation and maintenance of heterochromatin at the Xi.  相似文献   

19.
Faithful duplication of the genome in eukaryotes requires ordered assembly of a multi-protein complex called the pre-replicative complex (pre-RC) prior to S phase; transition to the pre-initiation complex (pre-IC) at the beginning of DNA replication; coordinated progression of the replisome during S phase; and well-controlled regulation of replication licensing to prevent re-replication. These events are achieved by the formation of distinct protein complexes that form in a cell cycle-dependent manner. Several components of the pre-RC and pre-IC are highly conserved across all examined eukaryotic species. Many of these proteins, in addition to their bona fide roles in DNA replication are also required for other cell cycle events including heterochromatin organization, chromosome segregation and centrosome biology. As the complexity of the genome increases dramatically from yeast to human, additional proteins have been identified in higher eukaryotes that dictate replication initiation, progression and licensing. In this review, we discuss the newly discovered components and their roles in cell cycle progression.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号