首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Regulation of AMPA receptor trafficking and synaptic plasticity   总被引:1,自引:0,他引:1  
AMPA receptors (AMPARs) mediate the majority of fast excitatory synaptic transmission in the brain. Dynamic changes in neuronal synaptic efficacy, termed synaptic plasticity, are thought to underlie information coding and storage in learning and memory. One major mechanism that regulates synaptic strength involves the tightly regulated trafficking of AMPARs into and out of synapses. The life cycle of AMPARs from their biosynthesis, membrane trafficking, and synaptic targeting to their degradation are controlled by a series of orchestrated interactions with numerous intracellular regulatory proteins. Here we review recent progress made toward the understanding the regulation of AMPAR trafficking, focusing on the roles of several key intracellular AMPAR interacting proteins.  相似文献   

2.
The delivery of neurotransmitter receptors into the synaptic membrane is essential for synaptic function and plasticity. However, the molecular mechanisms of these specialized trafficking events and their integration with the intracellular membrane transport machinery are virtually unknown. Here, we have investigated the role of the Rab family of membrane sorting proteins in the late stages of receptor trafficking into the postsynaptic membrane. We have identified Rab8, a vesicular transport protein associated with trans-Golgi network membranes, as a critical component of the cellular machinery that delivers AMPA-type glutamatergic receptors (AMPARs) into synapses. Using electron microscopic techniques, we have found that Rab8 is localized in close proximity to the synaptic membrane, including the postsynaptic density. Electrophysiological studies indicated that Rab8 is necessary for the synaptic delivery of AMPARs during plasticity (long-term potentiation) and during constitutive receptor cycling. In addition, Rab8 is required for AMPAR delivery into the spine surface, but not for receptor transport from the dendritic shaft into the spine compartment or for delivery into the dendritic surface. Therefore, Rab8 specifically drives the local delivery of AMPARs into synapses. These results demonstrate a new role for the cellular secretory machinery in the control of synaptic function and plasticity directly at the postsynaptic membrane.  相似文献   

3.
Ehlers MD 《Neuron》2000,28(2):511-525
Both acute and chronic changes in AMPA receptor (AMPAR) localization are critical for synaptic formation, maturation, and plasticity. Here I report that AMPARs are differentially sorted between recycling and degradative pathways following endocytosis. AMPAR sorting occurs in early endosomes and is regulated by synaptic activity and activation of AMPA and NMDA receptors. AMPAR intemalization triggered by NMDAR activation is Ca2+-dependent, requires protein phosphatases, and is followed by rapid membrane reinsertion. Furthermore, NMDAR-mediated AMPAR trafficking is regulated by PKA and accompanied by dephosphorylation and rephosphorylation of GluR1 subunits at a PKA site. In contrast, activation of AMPARs without NMDAR activation targets AMPARs to late endosomes and lysosomes, independent of Ca2+, protein phosphatases, or PKA. These results demonstrate that activity regulates AMPAR endocytic sorting, providing a potential mechanistic link between rapid and chronic changes in synaptic strength.  相似文献   

4.
Brief periods of repetitive neural firing onto adjacent neurons can lead to changes in synaptic plasticity, that is, changes in the make-up of macromolecular complexes located at synapses. This process includes the regulated trafficking of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) to synaptic membranes. Little is known, however, about how the AMPARs are regulated before they are shuttled to the membrane. Greger et al. have found that the length of the cytoplasmic tails of constituent subunits of a given AMPAR is determined by editing [at a glutamine (Q) or an arginine (R) codon] near their C termini. Tail length, in turn, dictates whether AMPARs will be retained or quickly released from the endoplasmic reticulum.  相似文献   

5.
Activity-dependent modification of excitatory synaptic transmission is a fundamental mechanism for developmental plasticity of the neural circuits and experience-dependent plasticity. Synaptic glutamatergic receptors including AMPA receptors and NMDA receptors (AMPARs and NMDARs) are embedded in the postsynaptic density, a highly organized protein network. Overwhelming data have shown that PSD-95-like membrane associated guanylate kinases (PSD-MAGUKs), a major family of scaffold proteins at glutamatergic synapses, regulate basal synaptic AMPAR function and trafficking. It is now clear that PSD-MAGUKs have multifaceted functions in regulating both basal synaptic transmission and synaptic plasticity. Here we discuss recent advancements in understanding the roles of PSD-95 and other family members of PSD-MAGUKs in synaptic plasticity, both as an anchoring protein for synaptic AMPARs and as a signaling scaffold for mediating the interaction of the signaling complex and NMDARs.  相似文献   

6.
AMPA-type glutamate receptors (AMPARs) play a critical role in mediating fast excitatory synaptic transmission in the brain. Alterations in receptor expression, distribution, and trafficking have been shown to underlie synaptic plasticity and higher brain functions, including learning and memory, as well as brain dysfunctions such as drug addiction and psychological disorders. Therefore, it is essential to elucidate the molecular mechanisms that regulate AMPAR dynamics. We have shown previously that mammalian AMPARs are subject to posttranslational modification by ubiquitin, with AMPAR ubiquitination enhancing receptor internalization and reducing AMPAR cell surface expression. Here we report a crucial role for epidermal growth factor receptor substrate 15 (Eps15), an endocytic adaptor, in ubiquitination-dependent AMPAR internalization. We find that suppression or overexpression of Eps15 results in changes in AMPAR surface expression. Eps15 interacts with AMPARs, which requires Nedd4-mediated GluA1 ubiquitination and the ubiquitin-interacting motif of Eps15. Importantly, we find that Eps15 plays an important role in AMPAR internalization. Knockdown of Eps15 suppresses the internalization of GluA1 but not the mutant GluA1 that lacks ubiquitination sites, indicating a role of Eps15 for the internalization of ubiquitinated AMPARs. These results reveal a novel molecular mechanism employed specifically for the trafficking of the ubiquitin-modified AMPARs.  相似文献   

7.
Some ubiquitin-like (UBL) domain-containing proteins are known to play roles in receptor trafficking. Alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPARs) undergo constitutive cycling between the intracellular compartment and the cell surface in the central nervous system. However, the function of UBL domain-containing proteins in the recycling of the AMPARs to the synaptic surface has not yet been reported.Here, we report that the Transmembrane and ubiquitin-like domain-containing 1 (Tmub1) protein, formerly known as the Hepatocyte Odd Protein Shuttling (HOPS) protein, which is abundantly expressed in the brain and which exists in a synaptosomal membrane fraction, facilitates the recycling of the AMPAR subunit GluR2 to the cell surface. Neurons transfected with Tmub1/HOPS-RNAi plasmids showed a significant reduction in the AMPAR current as compared to their control neurons. Consistently, the synaptic surface expression of GluR2, but not of GluR1, was significantly decreased in the neurons transfected with the Tmub1/HOPS-RNAi and increased in the neurons overexpressing EGFP-Tmub1/HOPS. The altered surface expression of GluR2 was speculated to be due to the altered surface-recycling of the internalized GluR2 in our recycling assay. Eventually, we found that GluR2 and glutamate receptor interacting protein (GRIP) were coimmunoprecipitated by the anti-Tmub1/HOPS antibody from the mouse brain. Taken together, these observations show that the Tmub1/HOPS plays a role in regulating basal synaptic transmission; it contributes to maintain the synaptic surface number of the GluR2-containing AMPARs by facilitating the recycling of GluR2 to the plasma membrane.  相似文献   

8.
Corticosterone, the major stress hormone, plays an important role in regulating neuronal functions of the limbic system, although the cellular targets and molecular mechanisms of corticosteroid signaling are largely unknown. Here we show that a short treatment of corticosterone significantly increases α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR)-mediated synaptic transmission and AMPAR membrane trafficking in pyramidal neurons of prefrontal cortex, a key region involved in cognition and emotion. This enhancing effect of corticosterone is through a mechanism dependent on Rab4, the small GTPase-controlling receptor recycling between early endosome and plasma membrane. Guanosine nucleotide dissociation inhibitor (GDI), which regulates the cycle of Rab proteins between membrane and cytosol, forms an increased complex with Rab4 after corticosterone treatment. Corticosterone also triggers an increased GDI phosphorylation at Ser-213 by the serum- and glucocorticoid-inducible kinase (SGK). Moreover, AMPAR synaptic currents and surface expression and their regulation by corticosterone are altered by mutating Ser-213 on GDI. These results suggest that corticosterone, via SGK phosphorylation of GDI at Ser-213, increases the formation of GDI-Rab4 complex, facilitating the functional cycle of Rab4 and Rab4-mediated recycling of AMPARs to the synaptic membrane. It provides a potential mechanism underlying the role of corticosteroid stress hormone in up-regulating excitatory synaptic efficacy in cortical neurons.  相似文献   

9.

Background

In brain, N-methyl-D-aspartate (NMDA) receptor (NMDAR) activation can induce long-lasting changes in synaptic α-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptor (AMPAR) levels. These changes are believed to underlie the expression of several forms of synaptic plasticity, including long-term potentiation (LTP). Such plasticity is generally believed to reflect the regulated trafficking of AMPARs within dendritic spines. However, recent work suggests that the movement of molecules and organelles between the spine and the adjacent dendritic shaft can critically influence synaptic plasticity. To determine whether such movement is strictly required for plasticity, we have developed a novel system to examine AMPAR trafficking in brain synaptosomes, consisting of isolated and apposed pre- and postsynaptic elements.

Methodology/Principal Findings

We report here that synaptosomes can undergo LTP-like plasticity in response to stimuli that mimic synaptic NMDAR activation. Indeed, KCl-evoked release of endogenous glutamate from presynaptic terminals, in the presence of the NMDAR co-agonist glycine, leads to a long-lasting increase in surface AMPAR levels, as measured by [3H]-AMPA binding; the increase is prevented by an NMDAR antagonist 2-amino-5-phosphonopentanoic acid (AP5). Importantly, we observe an increase in the levels of GluR1 and GluR2 AMPAR subunits in the postsynaptic density (PSD) fraction, without changes in total AMPAR levels, consistent with the trafficking of AMPARs from internal synaptosomal compartments into synaptic sites. This plasticity is reversible, as the application of AMPA after LTP depotentiates synaptosomes. Moreover, depotentiation requires proteasome-dependent protein degradation.

Conclusions/Significance

Together, the results indicate that the minimal machinery required for LTP is present and functions locally within isolated dendritic spines.  相似文献   

10.
α-Amino-3-hydroxy-5-methyl-isoxazole-4-propionic acid receptors (AMPARs) are the primary mediators of excitatory synaptic transmission in the brain. Alterations in AMPAR localization and turnover have been considered critical mechanisms underpinning synaptic plasticity and higher brain functions, but the molecular processes that control AMPAR trafficking and stability are still not fully understood. Here, we report that mammalian AMPARs are subject to ubiquitination in neurons and in transfected heterologous cells. Ubiquitination facilitates AMPAR endocytosis, leading to a reduction in AMPAR cell-surface localization and total receptor abundance. Mutation of lysine residues to arginine residues at the glutamate receptor subunit 1 (GluA1) C-terminus dramatically reduces GluA1 ubiquitination and abolishes ubiquitin-dependent GluA1 internalization and degradation, indicating that the lysine residues, particularly K868, are sites of ubiquitination. We also find that the E3 ligase neural precursor cell expressed, developmentally down-regulated 4 (Nedd4) is enriched in synaptosomes and co-localizes and associates with AMPARs in neurons. Nedd4 expression leads to AMPAR ubiquitination, leading to reduced AMPAR surface expression and suppressed excitatory synaptic transmission. Conversely, knockdown of Nedd4 by specific siRNAs abolishes AMPAR ubiquitination. These data indicate that Nedd4 is the E3 ubiquitin ligase responsible for AMPAR ubiquitination, a modification that regulates multiple aspects of AMPAR molecular biology including trafficking, localization and stability.  相似文献   

11.
Isaac JT  Ashby MC  McBain CJ 《Neuron》2007,54(6):859-871
The AMPA receptor (AMPAR) GluR2 subunit dictates the critical biophysical properties of the receptor, strongly influences receptor assembly and trafficking, and plays pivotal roles in a number of forms of long-term synaptic plasticity. Most neuronal AMPARs contain this critical subunit; however, in certain restricted neuronal populations and under certain physiological or pathological conditions, AMPARs that lack this subunit are expressed. There is a current surge of interest in such GluR2-lacking Ca2+-permeable AMPARs in how they affect the regulation of synaptic transmission. Here, we bring together recent data highlighting the novel and important roles of GluR2 in synaptic function and plasticity.  相似文献   

12.
The number of synaptic alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA)-type glutamate receptors (AMPARs) controls the strength of excitatory transmission. AMPARs cycle between internal endosomal compartments and the plasma membrane. Interactions between the AMPAR subunit GluR2, glutamate receptor interacting protein 1 (GRIP1), and the endosomal protein NEEP21 are essential for correct GluR2 recycling. Here we show that an about 85-kDa protein kinase phosphorylates GRIP1 on serine 917. This kinase is present in NEEP21 immunocomplexes and is activated in okadaic acid-treated neurons. Pulldown assays and atomic force microscopy indicate that phosphorylated GRIP shows reduced binding to NEEP21. AMPA or N-methyl-D-aspartate stimulation of hippocampal neurons induces delayed phosphorylation of the same serine 917. A wild type carboxy-terminal GRIP1 fragment expressed in hippocampal neurons interferes with GluR2 surface expression. On the contrary, a S917D mutant fragment does not interfere with GluR2 surface expression. Likewise, coexpression of GluR2 together with full-length wild type GRIP1 enhances GluR2 surface expression in fibroblasts, whereas full-length GRIP1-S917D had no effect. This indicates that this serine residue is implicated in AMPAR cycling. Our results identify an important regulatory mechanism in the trafficking of AMPAR subunits between internal compartments and the plasma membrane.  相似文献   

13.
Hanley JG  Khatri L  Hanson PI  Ziff EB 《Neuron》2002,34(1):53-67
AMPA receptor (AMPAR) trafficking is crucial for synaptic plasticity that may be important for learning and memory. NSF and PICK1 bind the AMPAR GluR2 subunit and are involved in trafficking of AMPARs. Here, we show that GluR2, PICK1, NSF, and alpha-/beta-SNAPs form a complex in the presence of ATPgammaS. Similar to SNARE complex disassembly, NSF ATPase activity disrupts PICK1-GluR2 interactions in this complex. Alpha- and beta-SNAP have differential effects on this reaction. SNAP overexpression in hippocampal neurons leads to corresponding changes in AMPAR trafficking by acting on GluR2-PICK1 complexes. This demonstrates that the previously reported synaptic stabilization of AMPARs by NSF involves disruption of GluR2-PICK1 interactions. Furthermore, we are reporting a non-SNARE substrate for NSF disassembly activity.  相似文献   

14.
The surface expression and localization of AMPA receptors (AMPARs) at dendritic spines are tightly controlled to regulate synaptic transmission. Here we show that de novo exocytosis of the GluR2 AMPAR subunit occurs at the dendritic shaft and that new AMPARs diffuse into spines by lateral diffusion in the membrane. However, membrane topology restricts this lateral diffusion. We therefore investigated which mechanisms recruit AMPARs to spines from the shaft and demonstrated that inhibition of dynamin GTPase activity reduced lateral diffusion of membrane-anchored green fluorescent protein and super-ecliptic pHluorin (SEP)-GluR2 into spines. In addition, the activation of synaptic N-methyl-d-aspartate (NMDA) receptors enhanced lateral diffusion of SEP-GluR2 and increased the number of endogenous AMPARs in spines. The NMDA-invoked effects were prevented by dynamin inhibition, suggesting that activity-dependent dynamin-mediated endocytosis within spines generates a net inward membrane drift that overrides lateral diffusion barriers to enhance membrane protein delivery into spines. These results provide a novel mechanistic explanation of how AMPARs and other membrane proteins are recruited to spines by synaptic activity.AMPA3 receptors (AMPARs) are of fundamental importance because they mediate the majority of fast excitatory synaptic transmission in the mammalian central nervous system (1). Most excitatory synapses are characterized morphologically by dendritic spines that contain an electron-dense postsynaptic density (PSD) at their head (2, 3). PSD is highly enriched in AMPARs and associated proteins equired for synaptic transmission and signal transduction (4-6). Activity-evoked changes in functional postsynaptic AMPARs mediate the two main forms of synaptic plasticity believed to underlie learning and memory in the hippocampus (7). Long term potentiation involves the activity-dependent recruitment of AMPARs to the postsynaptic membrane and a concurrent increase in AMPA-mediated transmission, whereas long term depression is a decrease in synaptic AMPAR function (8).The number and subunit composition of synaptic AMPARs are stringently regulated, but despite intense investigation, the processes by which AMPARs are delivered to and retained at the PSD remain controversial. Using photoreactive antagonists and electrophysiology, it has been proposed that AMPARs are only inserted in the plasma membrane at the cell body and laterally diffuse long distances to synapses (9). In direct contrast, approaches using real-time imaging have suggested that AMPARs are inserted in the plasma membrane of the dendritic shaft close to, but not at, dendritic spines (10). It has also been suggested that AMPARs could be inserted directly into the plasma membrane of the PSD (11).Independent of the route of delivery for new AMPARs to synapses, it is well established that lateral diffusion in the plasma membrane allows the exchange of receptors in and out of the PSD (12-14). Using palmitoylated membrane-anchored GFP (mGFP), which partitions to the inner leaflet of the plasma membrane, it has also been reported that diffusion is significantly retarded within spines compared with the shaft and that AMPAR activation increases the rates of mGFP diffusion in spines (15). In addition, we have shown previously that membrane protein movement into and out of spines is slow compared with lateral diffusion on non-spiny membrane (16), and modeling studies have predicted that spine length is a major determinant of the time a protein takes to reach the PSD (17). More recently, it has been proposed that endocytosis at specialized endocytic zones close to the PSD within spines is required to maintain the steady state complement of synaptic AMPARs (18).Taken together these findings suggest that endocytosis and exocytosis as well as lateral diffusion and membrane topology may all play important roles in regulating membrane protein mobility in spines. The interrelationships between these processes, however, remain unclear. Here we used FRAP (fluorescence recovery after photobleaching) and multisite FLIP (fluorescence loss in photobleaching) to visualize super-ecliptic pHluorin-tagged GluR2 surface expression and AMPAR movement in real time. We examined how lateral diffusion is regulated in spines both by blocking dynamin GTPase activity and stimulating NMDARs. Combined with Monte Carlo simulations on lattices fitting theoretical spines, our data indicate that the membrane topology of spines alone is sufficient to constrain lateral diffusion. NMDAR activation facilitates AMPAR recruitment to spines by a process that involves the recruitment of plasma membrane, together with the constituent membrane proteins, from adjacent regions of the dendritic shaft being drawn into the spine to replace membrane that is internalized during endocytosis. In other words, our results suggest a mode of lateral diffusion that is neither free nor anomalous. Rather, we show the directional diffusion of membrane-embedded proteins toward the postsynapse driven by the endocytosis within the spine. These results provide a new mechanistic explanation of how synaptic activity can overcome topology-induced diffusion barriers to recruit new membrane proteins to the spine.  相似文献   

15.
AMPA-type glutamate receptors (AMPARs) mediate most fast excitatory synaptic transmission in the mammalian brain. It is widely believed that the long-lasting, activity-dependent changes in synaptic strength, including long-term potentiation and long-term depression, could be the molecular and cellular basis of experience-dependent plasticities, such as learning and memory. Those changes of synaptic strength are directly related to AMPAR trafficking to and away from the synapse. There are many forms of synaptic plasticity in the mammalian brain, while the prototypic form, hippocampal CA1 long-term potentiation, has received the most intense investigation. After synthesis, AMPAR subunits undergo posttranslational modifications such as glycosylation, palmitoylation, phosphorylation and potential ubiquitination. In addition, AMPAR subunits spatiotemporally associate with specific neuronal proteins in the cell. Those posttranslational modifications and receptor-associated proteins play critical roles in AMPAR trafficking and regulation of AMPAR-dependent synaptic plasticity. Here, we summarize recent studies on posttranslational modifications and associated proteins of AMPAR subunits, and their roles in receptor trafficking and synaptic plasticity.  相似文献   

16.
Central to organization of signaling pathways are scaffolding, anchoring and adaptor proteins that mediate localized assembly of multi-protein complexes containing receptors, second messenger-generating enzymes, kinases, phosphatases, and substrates. At the postsynaptic density (PSD) of excitatory synapses, AMPA (AMPAR) and NMDA (NMDAR) glutamate receptors are linked to signaling proteins, the actin cytoskeleton, and synaptic adhesion molecules on dendritic spines through a network of scaffolding proteins that may play important roles regulating synaptic structure and receptor functions in synaptic plasticity underlying learning and memory. AMPARs are rapidly recruited to dendritic spines through NMDAR activation during induction of long-term potentiation (LTP) through pathways that also increase the size and F-actin content of spines. Phosphorylation of AMPAR-GluR1 subunits by the cAMP-dependent protein kinase (PKA) helps stabilize AMPARs recruited during LTP. In contrast, induction of long-term depression (LTD) leads to rapid calcineurin-protein phosphatase 2B (CaN) mediated dephosphorylation of PKA-phosphorylated GluR1 receptors, endocytic removal of AMPAR from synapses, and a reduction in spine size. However, mechanisms for coordinately regulating AMPAR localization, phosphorylation, and synaptic structure by PKA and CaN are not well understood. A kinase-anchoring protein (AKAP) 79/150 is a PKA- and CaN-anchoring protein that is linked to NMDARs and AMPARs through PSD-95 and SAP97 membrane-associated guanylate kinase (MAGUK) scaffolds. Importantly, disruption of PKA-anchoring in neurons and functional analysis of GluR1-MAGUK-AKAP79 complexes in heterologous cells suggests that AKAP79/150-anchored PKA and CaN may regulate AMPARs in LTD. In the work presented at the "First International Meeting on Anchored cAMP Signaling Pathways" (Berlin-Buch, Germany, October 15-16, 2005), we demonstrate that AKAP79/150 is targeted to dendritic spines by an N-terminal basic region that binds phosphatidylinositol-4,5-bisphosphate (PIP(2)), F-actin, and actin-linked cadherin adhesion molecules. Thus, anchoring of PKA and CaN as well as physical linkage of the AKAP to both cadherin-cytoskeletal and MAGUK-receptor complexes could play roles in coordinating changes in synaptic structure and receptor signaling functions underlying plasticity. Importantly, we provide evidence showing that NMDAR-CaN signaling pathways implicated in AMPAR regulation during LTD lead to a disruption of AKAP79/150 interactions with actin, MAGUKs, and cadherins and lead to a loss of the AKAP and anchored PKA from postsynapses. Our studies thus far indicate that this AKAP79/150 translocation depends on activation of CaN, F-actin reorganization, and possibly Ca(2+)-CaM binding to the N-terminal basic regions. Importantly, this tranlocation of the AKAP79/150-PKA complex from spines may shift the balance of PKA kinase and CaN/PP1 phosphatase activity at the postsynapse in favor of the phosphatases. This loss of PKA could then promote actions of CaN and PP1 during induction of LTD including maintaining AMPAR dephosphorylation, promoting AMPAR endocytosis, and preventing AMPAR recycling. Overall, these findings challenge the accepted notion that AKAPs are static anchors that position signaling proteins near fixed target substrates and instead suggest that AKAPs can function in more dynamic manners to regulate local signaling events.  相似文献   

17.
Regulation of striatal medium spiny neuron synapses underlies forms of motivated behavior and pathological drug seeking. A primary mechanism for increasing synaptic strength is the trafficking of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) into the postsynapse, a process mediated by GluA1 AMPAR subunit phosphorylation. We have examined the role of converging glutamate and dopamine inputs in regulating biochemical cascades upstream of GluA1 phosphorylation. We focused on the role of Ca2+-permeable AMPARs (CPARs), which lack the GluA2 AMPAR subunit. Under conditions that prevented depolarization, stimulation of CPARs activated neuronal nitric oxide synthase and production of cGMP. CPAR-dependent cGMP production was sufficient to induce synaptic insertion of GluA1, detected by confocal microscopy, through a mechanism dependent on GluA1 Ser-845 phosphorylation. Dopamine D1 receptors, in contrast, stimulate GluA1 extra synaptic insertion. Simultaneous activation of dopamine D1 receptors and CPARs induced additive increases in GluA1 membrane insertion, but only CPAR stimulation augmented CPAR-dependent GluA1 synaptic insertion. This incorporation into the synapse proceeded through a sequential two-step mechanism; that is, cGMP-dependent protein kinase II facilitated membrane insertion and/or retention, and protein kinase C activity was necessary for synaptic insertion. These data suggest a feed-forward mechanism for synaptic priming whereby an initial stimulus acting independently of voltage-gated conductance increases striatal neuron excitability, facilitating greater neuronal excitation by a subsequent stimulus.  相似文献   

18.
Activity-dependent changes in the strength of excitatory synapses are a cellular mechanism for the plasticity of neuronal networks that is widely recognized to underlie cognitive functions such as learning and memory. AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid)-type glutamate receptors (AMPARs) are the main transducers of rapid excitatory transmission in the mammalian CNS, and recent discoveries indicate that the mechanisms which regulate AMPARs are more complex than previously thought. This review focuses on recent evidence that alterations to AMPAR functional properties are coupled to their trafficking, cytoskeletal dynamics and local protein synthesis. These relationships offer new insights into the regulation of AMPARs and synaptic strength by cellular signalling.  相似文献   

19.
Hou Q  Gilbert J  Man HY 《Neuron》2011,72(5):806-818
During homeostatic adjustment in response to alterations in neuronal activity, synaptic expression of AMPA receptors (AMPARs) is globally tuned up or down so that the neuronal activity is restored to a physiological range. Given that a central neuron receives multiple presynaptic inputs, whether and how AMPAR synaptic expression is homeostatically regulated at individual synapses remain unclear. In cultured hippocampal neurons we report that when activity of an individual presynaptic terminal is selectively elevated by light-controlled excitation, AMPAR abundance at the excited synapses is selectively downregulated in an NMDAR-dependent manner. The reduction in surface AMPARs is accompanied by enhanced receptor endocytosis and dependent on proteasomal activity. Synaptic activation also leads to a site-specific increase in the ubiquitin ligase Nedd4 and polyubiquitination levels, consistent with?AMPAR ubiquitination and degradation in the spine. These results indicate that AMPAR accumulation at individual synapses is subject to autonomous homeostatic regulation in response to synaptic activity.  相似文献   

20.
Regulated membrane trafficking of AMPA-type glutamate receptors (AMPARs) is a key mechanism underlying synaptic plasticity, yet the pathways used by AMPARs are not well understood. In this paper, we show that the AMPAR subunit GLR-1 in Caenorhabditis elegans utilizes the retrograde transport pathway to regulate AMPAR synaptic abundance. Mutants for rab-6.2, the retromer genes vps-35 and snx-1, and rme-8 failed to recycle GLR-1 receptors, resulting in GLR-1 turnover and behavioral defects indicative of diminished GLR-1 function. In contrast, expression of constitutively active RAB-6.2 drove the retrograde transport of GLR-1 from dendrites back to cell body Golgi. We also find that activated RAB-6.2 bound to and colocalized with the PDZ/phosphotyrosine binding domain protein LIN-10. RAB-6.2 recruited LIN-10. Moreover, the regulation of GLR-1 transport by RAB-6.2 required LIN-10 activity. Our results demonstrate a novel role for RAB-6.2, its effector LIN-10, and the retromer complex in maintaining synaptic strength by recycling AMPARs along the retrograde transport pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号