首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The proapoptotic Bcl2 homology domain 3(BH3)-only protein Bim is controlled by stringent post-translational regulation, predominantly through alterations in phosphorylation status. To identify new kinases involved in its regulation, we carried out a yeast two-hybrid screen using a non-spliceable variant of the predominant isoform--Bim(EL)--as the bait and identified the regulatory subunit of cyclic-AMP-dependent protein kinase A--PRKAR1A--as an interacting partner. We also show that protein kinase A (PKA) is a Bim(EL) isoform-specific kinase that promotes its stabilization. Inhibition of PKA or mutation of the PKA phosphorylation site within Bim(EL) resulted in its accelerated proteasome-dependent degradation. These results might have implications for human diseases that are characterized by abnormally increased PKA activity, such as the Carney complex and dilated cardiomyopathy.  相似文献   

3.
4.
Both the ERK and phosphatidylinositol 3'-kinase (PI3K) signaling pathways can protect cells from apoptosis following withdrawal of survival factors. We have previously shown that the ERK1/2 pathway acts independently of PI3K to block expression of the BH3-only protein, BimEL, and prevent serum withdrawal-induced cell death, although the precise mechanism by which ERK reduced BimEL levels was unclear. By comparing Bim mRNA and Bim protein, expression we now show that the rapid expression of BimEL following serum withdrawal cannot be accounted for simply by increases in mRNA following inhibition of PI3K. In cells maintained in serum BimEL is a phosphoprotein. We show that activation of the ERK1/2 pathway is both necessary and sufficient to promote BimEL phosphorylation and that this leads to a substantial increase in turnover of the BimEL protein. ERK1/2-dependent degradation of BimEL proceeds via the proteasome pathway because it is blocked by proteasome inhibitors and is defective at the restrictive temperature in cells with a temperature-sensitive mutation in the E1 component of the ubiquitin-conjugating system. Finally, co-transfection of BimEL and FLAG-ubiquitin causes the accumulation of polyubiquitinated forms of Bim, and this requires the ERK1/2 pathway. Our findings provide new insights into the regulation of Bim and the role of the ERK pathway in cell survival.  相似文献   

5.
6.
Mitochondrial outer membrane permeabilization is a watershed event in the process of apoptosis, which is tightly regulated by a series of pro- and anti-apoptotic proteins belonging to the BCL-2 family, each characteristically possessing a BCL-2 homology domain 3 (BH3). Here, we identify a yeast protein (Ybh3p) that interacts with BCL-X(L) and harbours a functional BH3 domain. Upon lethal insult, Ybh3p translocates to mitochondria and triggers BH3 domain-dependent apoptosis. Ybh3p induces cell death and disruption of the mitochondrial transmembrane potential via the mitochondrial phosphate carrier Mir1p. Deletion of Mir1p and depletion of its human orthologue (SLC25A3/PHC) abolish stress-induced mitochondrial targeting of Ybh3p in yeast and that of BAX in human cells, respectively. Yeast cells lacking YBH3 display prolonged chronological and replicative lifespans and resistance to apoptosis induction. Thus, the yeast genome encodes a functional BH3 domain that induces cell death through phylogenetically conserved mechanisms.  相似文献   

7.
Bim, a "BH3-only" protein, is expressed de novo following withdrawal of serum survival factors and promotes cell death. We have shown previously that activation of the ERK1/2 pathway promotes phosphorylation of Bim(EL), targeting it for degradation via the proteasome. However, the nature of the kinase responsible for Bim(EL) phosphorylation remained unclear. We now show that Bim(EL) is phosphorylated on at least three sites in response to activation of the ERK1/2 pathway. By using the peptidylprolyl isomerase, Pin1, as a probe for proline-directed phosphorylation, we show that ERK1/2-dependent phosphorylation of Bim(EL) occurs at (S/T)P motifs. ERK1/2 phosphorylates Bim(EL), but not Bim(S) or Bim(L), in vitro, and mutation of Ser(65) to alanine blocks the phosphorylation of Bim(EL) by ERK1/2 in vitro and in vivo and prevents the degradation of the protein following activation of the ERK1/2 pathway. We also find that ERK1/2, but not JNK, can physically associate with GST-Bim(EL), but not GST-Bim(L) or GST-Bim(S), in vitro. ERK1/2 also binds to full-length Bim(EL) in vivo, and we have localized a potential ERK1/2 "docking domain" lying within a 27-amino acid stretch of the Bim(EL) protein. Our findings provide new insights into the post-translational regulation of Bim(EL) and the role of the ERK1/2 pathway in cell survival signaling.  相似文献   

8.
9.
Several kinases phosphorylate vimentin, the most common intermediate filament protein, in mitosis. Aurora-B and Rho-kinase regulate vimentin filament separation through the cleavage furrow-specific vimentin phosphorylation. Cdk1 also phosphorylates vimentin from prometaphase to metaphase, but its significance has remained unknown. Here we demonstrated a direct interaction between Plk1 and vimentin-Ser55 phosphorylated by Cdk1, an event that led to Plk1 activation and further vimentin phosphorylation. Plk1 phosphorylated vimentin at approximately 1 mol phosphate/mol substrate, which partly inhibited its filament forming ability, in vitro. Plk1 induced the phosphorylation of vimentin-Ser82, which was elevated from metaphase and maintained until the end of mitosis. This elevation followed the Cdk1-induced vimentin-Ser55 phosphorylation, and was impaired by Plk1 depletion. Mutational analyses revealed that Plk1-induced vimentin-Ser82 phosphorylation plays an important role in vimentin filaments segregation, coordinately with Rho-kinase and Aurora-B. Taken together, these results indicated a novel mechanism that Cdk1 regulated mitotic vimentin phosphorylation via not only a direct enzyme reaction but also Plk1 recruitment to vimentin.  相似文献   

10.
11.
The mechanism of lovastatin-induced cell death was examined in three established human glioblastoma cell lines; U87, U251, and U138. Changes in potential modifiers of apoptosis, including Bcl-2 family proteins and MAP kinase targets after such lovastatin treatment, were evaluated. Lovastatin (5 microm) treatment causes extensive cell death in two of the cell lines, U87 and U251; but only minimal in a third, U138. Lovastatin-induced death occurs in correlation with significantly increased levels of the BH3-only protein, Bim. The up-regulation of Bim levels was directly associated with an increased incidence of apoptosis. Lovastatin treatment in U87 cells results in activation of targets of three major mitogen-activating protein kinase cascades including Erk1/2, JNK and p38. Changes in levels of Bim, as well as increase phosphorylation of Erk1/2, c-jun, and p38 are all prevented by co-incubation of lovastatin and the isoprenylation metabolite, geranylgeranyl pyrophosphate. Inhibition of the MAP kinase pathways failed to block the increased expression of Bim expression or cell death. Further elucidation of the mechanisms of lovastatin-induced up-regulation of Bim and apoptosis in glioblastoma cells are important in determining a potential role for lovastatin as a chemotherapy agent.  相似文献   

12.
Apoptosis is triggered when proapoptotic members of the Bcl-2 protein family bearing only the BH3 association domain bind to Bcl-2 or its homologs and block their antiapoptotic activity. To test whether loss of the BH3-only protein Bim could prevent the cellular attrition caused by Bcl-2 deficiency, we generated mice lacking both genes. Mice without Bcl-2 have a fragile lymphoid system, become runted, turn gray, and succumb to polycystic kidney disease. Concomitant absence of Bim prevented all these disorders. Indeed, loss of even one bim allele restored normal kidney development, growth, and health. These results demonstrate that Bim levels set the threshold for initiation of apoptosis in several tissues and suggest that degenerative diseases might be alleviated by blocking BH3-only proteins.  相似文献   

13.
14.
The Neuroepithelial transforming gene 1 (Net1) is a RhoA subfamily guanine nucleotide exchange factor that is overexpressed in a number of cancers and contributes to cancer cell motility and proliferation. Net1 also plays a Rho GTPase independent role in mitotic progression, where it promotes centrosomal activation of Aurora A and Pak2, and aids in chromosome alignment during prometaphase. To understand regulatory mechanisms controlling the mitotic function of Net1, we examined whether it was phosphorylated by the mitotic kinase Cdk1. We observed that Cdk1 phosphorylated Net1 on multiple sites in its N-terminal regulatory domain and C-terminus in vitro. By raising phospho-specific antibodies to two of these sites, we also demonstrated that both endogenous and transfected Net1 were phosphorylated by Cdk1 in cells. Substitution of the major Cdk1 phosphorylation sites with aliphatic or acidic residues inhibited the interaction of Net1 with RhoA, and treatment of metaphase cells with a Cdk1 inhibitor increased Net1 activity. Cdk1 inhibition also increased Net1 localization to the plasma membrane and stimulated cortical F-actin accumulation. Moreover, Net1 overexpression caused spindle polarity defects that were reduced in frequency by acidic substitution of the major Cdk1 phosphorylation sites. These data indicate that Cdk1 phosphorylates Net1 during mitosis and suggest that this negatively regulates its ability to signal to RhoA and alter actin cytoskeletal organization.  相似文献   

15.
16.
A significant variation in susceptibility to paclitaxel-mediated killing was observed among a panel of short-term cultured non-small-cell lung cancer (NSCLC) cell lines. Susceptibility to killing by paclitaxel correlated with expression of the BH3-only protein, Bim, but not with other members of Bcl-2 family. NSCLC cell lines with the highest level of Bim expression are most susceptible to apoptosis induction after paclitaxel treatment. Forced expression of Bim increased paclitaxel-mediated killing of cells expressing an undetectable level of Bim. Conversely, knock down of Bim, but not Bcl-2 expression, decreased the susceptibility of tumor cells to paclitaxel-mediated killing. Similar observations were made using a panel of breast and prostate cancer cell lines. Paclitaxel impairs microtubule function, causes G2/M cell cycle blockade, mitochondria damage, and p53-independent apoptosis. These results established Bim as a critical molecular link between the microtubule poison, paclitaxel, and apoptosis.  相似文献   

17.
18.
Osteoclasts (OCs) undergo rapid apoptosis without trophic factors, such as macrophage colony-stimulating factor (M-CSF). Their apoptosis was associated with a rapid and sustained increase in the pro-apoptotic BH3-only Bcl-2 family member Bim. This was caused by the reduced ubiquitylation and proteasomal degradation of Bim that is mediated by c-Cbl. Although the number of OCs was increased in the skeletal tissues of bim-/- mice, the mice exhibited mild osteosclerosis due to reduced bone resorption. OCs differentiated from bone marrow cells of bim-/- animals showed a marked prolongation of survival in the absence of M-CSF, compared with bim+/+ OCs, but the bone-resorbing activity of bim-/- OCs was significantly reduced. Overexpression of a degradation-resistant lysine-free Bim mutant in bim-/- cells abrogated the anti-apoptotic effect of M-CSF, while wild-type Bim did not. These results demonstrate that ubiquitylation-dependent regulation of Bim levels is critical for controlling apoptosis and activation of OCs.  相似文献   

19.
BH3 mimetics are small molecules designed or discovered to mimic the binding of BH3-only proteins to the hydrophobic groove of antiapoptotic BCL2 proteins. The selectivity of these molecules for BCL2, BCL-X(L), or MCL1 has been established in vitro; whether they inhibit these proteins in cells has not been rigorously investigated. In this study, we used a panel of leukemia cell lines to assess the ability of seven putative BH3 mimetics to inhibit antiapoptotic proteins in a cell-based system. We show that ABT-737 is the only BH3 mimetic that inhibits BCL2 as assessed by displacement of BAD and BIM from BCL2. The other six BH3 mimetics activate the endoplasmic reticulum stress response inducing ATF4, ATF3, and NOXA, which can then bind to and inhibit MCL1. In most cancer cells, inhibition of one antiapoptotic protein does not acutely induce apoptosis. However, by combining two BH3 mimetics, one that inhibits BCL2 and one that induces NOXA, apoptosis is induced within 6 h in a BAX/BAK-dependent manner. Because MCL1 is a major mechanism of resistance to ABT-737, these results suggest a novel strategy to overcome this resistance. Our findings highlight a novel signaling pathway through which many BH3 mimetics inhibit MCL1 and suggest the potential use of these agents as adjuvants in combination with various chemotherapy strategies.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号