首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Hematopoietic stem cells (HSC) are a relatively quiescent pool of cells that perform the arduous task of replacing the short-lived mature cells of the peripheral blood. While a rapid expansion of HSCs under periods of hematological stress is warranted, their enhanced proliferation during homeostasis leads to loss of function. We recently reported that in HSCs, the evolutionarily conserved growth factor erv1-like (Gfer) acts to counter jun activation domain-binding protein 1 (Jab1)-mediated nuclear export and destabilization of the cell cycle inhibitor, p27kip1, by directly binding to and sequestering the COP9 signalosome (CSN) subunit. Through this mechanism, Gfer promotes quiescence and maintains the functional integrity of HSCs. Here, we extend our study to demonstrate an association between Gfer and Ca2+/calmodulin-dependent protein kinase IV (CaMKIV) in the regulation of HSC proliferation. Highly proliferative and functionally deficient Camk4-/- HSCs possess significantly lower levels of Gfer and p27kip1. Ectopic expression of Gfer restores quiescence and elevates p27kip1 expression in Camk4-/- HSCs. These results further substantiate a critical role for Gfer in the restriction of unwarranted proliferation in HSCs through the inhibition of Jab1 and subsequent stabilization and nuclear retention of p27kip1. This Gfer-mediated pro-quiescence mechanism could be therapeutically exploited in the treatment of hematological malignancies associated with elevated Jab1 and reduced p27kip1.Key words: hematopoietic stem cells, quiescence, proliferation, Gfer, CaMKIV, Jab1, p27kip1, Bcl-2  相似文献   

2.
Growth factor erv1-like (Gfer) is an evolutionarily conserved sulfhydryl oxidase that is enriched in embryonic and adult stem cells and plays an essential prosurvival role in pluripotent embryonic stem cells. Here we show that knockdown (KD) of Gfer in hematopoietic stem cells (HSCs) compromises their in vivo engraftment potential and triggers a hyper-proliferative response that leads to their exhaustion. KD of Gfer in HSCs does not elicit a significant alteration of mitochondrial morphology or loss of cell viability. However, these cells possess significantly reduced levels of the cyclin-dependent kinase inhibitor p27(kip1). In contrast, overexpression of Gfer in HSCs results in significantly elevated total and nuclear p27(kip1). KD of Gfer results in enhanced binding of p27(kip1) to its inhibitor, the COP9 signalosome subunit jun activation-domain binding protein 1 (Jab1), leading to its down-regulation. Conversely, overexpression of Gfer results in its enhanced binding to Jab1 and inhibition of the Jab1-p27(kip1) interaction. Furthermore, normalization of p27(kip1) in Gfer-KD HSCs rescues their in vitro proliferation deficits. Taken together, our data demonstrate the presence of a novel Gfer-Jab1-p27(kip1) pathway in HSCs that functions to restrict abnormal proliferation.  相似文献   

3.
4.
5.
Quiescence is required for the maintenance of hematopoietic stem cells (HSCs). Members of the Cip/Kip family of cyclin-dependent kinase (CDK) inhibitors (p21, p27, p57) have been implicated in HSC quiescence, but loss of p21 or p27 in mice affects HSC quiescence or functionality only under conditions of stress. Although p57 is the most abundant family member in quiescent HSCs, its role has remained uncharacterized. Here we show a severe defect in the self-renewal capacity of p57-deficient HSCs and a reduction of the proportion of the cells in G(0) phase. Additional ablation of p21 in a p57-null background resulted in a further decrease in the colony-forming activity of HSCs. Moreover, the HSC abnormalities of p57-deficient mice were corrected by knocking in the p27 gene at the p57 locus. Our results therefore suggest that, among Cip/Kip family CDK inhibitors, p57 plays a predominant role in the quiescence and maintenance of adult HSCs.  相似文献   

6.
A precise balance between quiescence and proliferation is crucial for the lifelong function of hematopoietic stem cells (HSCs). Cyclins E1 and E2 regulate exit from quiescence in fibroblasts, but their role in HSCs remains unknown. Here, we report a non-redundant role for cyclin E1 in mouse HSCs. A long-term culture-initiating cell (LTC-IC) assay indicated that the loss of cyclin E1, but not E2, compromised the colony-forming activity of primitive hematopoietic progenitors. Ccne1−/− mice showed normal hematopoiesis in vivo under homeostatic conditions but a severe impairment following myeloablative stress induced by 5-fluorouracil (5-FU). Under these conditions, Ccne1−/− HSCs were less efficient in entering the cell cycle, resulting in decreased hematopoiesis and reduced survival of mutant mice upon weekly 5-FU treatment. The role of cyclin E1 in homeostatic conditions became apparent in aged mice, where HSC quiescence was increased in Ccne1−/− animals. On the other hand, loss of cyclin E1 provided HSCs with a competitive advantage in bone marrow serial transplantation assays, suggesting that a partial impairment of cell cycle entry may exert a protective role by preventing premature depletion of the HSC compartment. Our data support a role for cyclin E1 in controlling the exit from quiescence in HSCs. This activity, depending on the physiological context, can either jeopardize or protect the maintenance of hematopoiesis.  相似文献   

7.
Cell cycle regulators play critical roles in the balance between hematopoietic stem cell (HSC) dormancy and proliferation. In this study, we report that cell cycle entry proceeded normally in HSCs null for cyclin-dependent kinase (CDK) inhibitor p57 due to compensatory upregulation of p27. HSCs null for both p57 and p27, however, were more proliferative and had reduced capacity to engraft in transplantation. We found that heat shock cognate protein 70 (Hsc70) interacts with both p57 and p27 and that the subcellular localization of Hsc70 was critical to maintain HSC cell cycle kinetics. Combined deficiency of p57 and p27 in HSCs resulted in nuclear import of an Hsc70/cyclin D1 complex, concomitant with Rb phosphorylation, and elicited severe defects in maintaining HSC quiescence. Taken together, these data suggest that regulation of cytoplasmic localization of Hsc70/cyclin D1 complex by p57 and p27 is a key intracellular mechanism in controlling HSC dormancy.  相似文献   

8.
Hematopoietic stem cells (HSCs) give rise to all lineages of blood cells. Because HSCs must persist for a lifetime, the balance between their proliferation and quiescence is carefully regulated to ensure blood homeostasis while limiting cellular damage. Cell cycle regulation therefore plays a critical role in controlling HSC function during both fetal life and in the adult. The cell cycle activity of HSCs is carefully modulated by a complex interplay between cell-intrinsic mechanisms and cell-extrinsic factors produced by the microenvironment. This fine-tuned regulatory network may become altered with age, leading to aberrant HSC cell cycle regulation, degraded HSC function, and hematological malignancy.  相似文献   

9.
Psoriasis, a chronic immune-mediated inflammatory skin disease, is characterized by dysregulated keratinocyte proliferation. The EF-hand calcium binding protein S100A7 has been found to be overexpressed in psoriatic keratinocytes. It is know that S100A7 may interact with Jab1, a cofactor that stabilizes c-Jun. Jab1 is known to downregulate the expression of the cell cycle inhibitor p27Kip1 in some cancer models. In this study, we aimed to investigate the possible interaction between S100A7 and Jab1 and the downstream effects on p27 Kip1 expression in normal human keratinocyte cells transfected with S100A7 CRISPR activation plasmid and in archival psoriatic skin samples. Our results showed that the upregulated S100A7 colocalizes with Jab1 at the nuclear level in transfected cells and psoriatic skin samples. We also showed a differential protein expression of Jab1 between cytoplasmic and nuclear compartments, thus suggesting Jab1 translocation from nucleus to cytoplasm. p27 Kip1 protein expression patterns would imply a translocation from nucleus and a subsequent degradation of this protein. The upregulation of S1007 and its interaction with Jab1 would contribute to the p27 Kip1-dependent impaired proliferation that characterizes psoriatic skin.  相似文献   

10.
11.
Zhao J  Zhang S  Wu X  Huan W  Liu Z  Wei H  Shen A  Teng H 《Neurochemical research》2011,36(3):549-558
KPC1 (Kip1 ubiquitylation-promoting complex 1) is the catalytic subunit of the ubiquitin ligase KPC, which regulates the degradation of the cyclin-dependent kinase inhibitor p27kip1 at the G1 phase of the cell cycle. To elucidate the expression and role of KPC1 in nervous system lesion and repair, we performed an acute spinal cord contusion injury (SCI) model in adult rats. Western blot analysis showed a significant up-regulation of KPC1 and a concomitant down-regulation of p27kip1 following spinal injury. Immunohistochemistry and immunofluorescence revealed wide expression of KPC1 in the spinal cord, including expression in neurons and astrocytes. After injury, KPC1 expression was increased predominantly in astrocytes, which highly expressed PCNA, a marker for proliferating cells. Co-immunoprecipitation demonstrated increased interactions between p27kip1 and KPC1 4 days after injury. To understand whether KPC1 plays a role in astrocyte proliferation, we applied LPS to induce astrocyte proliferation in vitro. Western blot analysis demonstrated that p27kip1 expression was negatively correlated with KPC1 expression following LPS stimulation. Immunofluorescence analysis showed subcellular localizations of p27kip1 and KPC1 were also changed following the stimulation of astrocytes with LPS. These results suggest that KPC1 is related to the down-regulation of p27kip1; this event may be involved in the proliferation of astrocytes after SCI.  相似文献   

12.

Background  

Excessive proliferation of vascular smooth muscle cells and leukocytes within the artery wall is a major event in the development of atherosclerosis. The growth suppressor p27kip1 associates with several cyclin-dependent kinase/cyclin complexes, thereby abrogating their capacity to induce progression through the cell cycle. Recent studies have implicated p27kip1 in the control of neointimal hyperplasia. For instance, p27kip1 ablation in apolipoprotein-E-null mice enhanced arterial cell proliferation and accelerated atherogenesis induced by dietary cholesterol. Therefore, p27kip1 is a candidate gene to modify the risk of developing atherosclerosis and associated ischaemic events (i.e., myocardial infarction and stroke).  相似文献   

13.
The age‐dependent decline in the self‐renewal capacity of stem cells plays a critical role in aging, but the precise mechanisms underlying this decline are not well understood. By limiting proliferative capacity, senescence is thought to play an important role in age‐dependent decline of stem cell self‐renewal, although direct evidence supporting this hypothesis is largely lacking. We have previously identified the E3 ubiquitin ligase Smurf2 as a critical regulator of senescence. In this study, we found that mice deficient in Smurf2 had an expanded hematopoietic stem cell (HSC) compartment in bone marrow under normal homeostatic conditions, and this expansion was associated with enhanced proliferation and reduced quiescence of HSCs. Surprisingly, increased cycling and reduced quiescence of HSCs in Smurf2‐deficient mice did not lead to premature exhaustion of stem cells. Instead, HSCs in aged Smurf2‐deficient mice had a significantly better repopulating capacity than aged wild‐type HSCs, suggesting that decline in HSC function with age is Smurf2 dependent. Furthermore, Smurf2‐deficient HSCs exhibited elevated long‐term self‐renewal capacity and diminished exhaustion in serial transplantation. As we found that the expression of Smurf2 was increased with age and in response to regenerative stress during serial transplantation, our findings suggest that Smurf2 plays an important role in regulating HSC self‐renewal and aging.  相似文献   

14.

Background

The maintenance of lifelong blood cell production ultimately rests on rare hematopoietic stem cells (HSCs) that reside in the bone marrow microenvironment. HSCs are traditionally viewed as mitotically quiescent relative to their committed progeny. However, traditional techniques for assessing proliferation activity in vivo, such as measurement of BrdU uptake, are incompatible with preservation of cellular viability. Previous studies of HSC proliferation kinetics in vivo have therefore precluded direct functional evaluation of multi-potency and self-renewal, the hallmark properties of HSCs.

Methodology/Principal Findings

We developed a non-invasive labeling technique that allowed us to identify and isolate candidate HSCs and early hematopoietic progenitor cells based on their differential in vivo proliferation kinetics. Such cells were functionally evaluated for their abilities to multi-lineage reconstitute myeloablated hosts.

Conclusions

Although at least a few HSC divisions per se did not influence HSC function, enhanced kinetics of divisional activity in steady state preceded the phenotypic changes that accompanied loss of HSC self-renewal. Therefore, mitotic quiescence of HSCs, relative to their committed progeny, is key to maintain the unique functional and molecular properties of HSCs.  相似文献   

15.

Background

Overexpression of the myristolated alanine-rich C kinase substrate (MARCKS) occurs in vascular proliferative diseases such as restenosis after bypass surgery. MARCKS knockdown results in arrest of vascular smooth muscle cell (VSMC) proliferation with little effect on endothelial cell (EC) proliferation. We sought to identify the mechanism of differential regulation by MARCKS of VSMC and EC proliferation in vitro and in vivo.

Methods and Results

siRNA-mediated MARCKS knockdown in VSMCs inhibited proliferation and prevented progression from phase G0/G1 to S. Protein expression of the cyclin-dependent kinase inhibitor p27kip1, but not p21cip1 was increased by MARCKS knockdown. MARCKS knockdown did not affect proliferation in VSMCs derived from p27kip1-/- mice indicating that the effect of MARCKS is p27kip1-dependent. MARCKS knockdown resulted in decreased phosphorylation of p27kip1 at threonine 187 and serine 10 as well as, kinase interacting with stathmin (KIS), cyclin D1, and Skp2 expression. Phosphorylation of p27kip1 at serine 10 by KIS is required for nuclear export and degradation of p27kip1. MARCKS knockdown caused nuclear trapping of p27kip1. Both p27kip1 nuclear trapping and cell cycle arrest were released by overexpression of KIS, but not catalytically inactive KIS. In ECs, MARCKS knockdown paradoxically increased KIS expression and cell proliferation. MARCKS knockdown in a murine aortic injury model resulted in decreased VSMC proliferation determined by bromodeoxyuridine (BrdU) integration assay, and inhibition of vascular wall thickening. MARCKS knockdown increased the rate of re-endothelialization.

Conclusions

MARCKS knockdown arrested VSMC cell cycle by decreasing KIS expression. Decreased KIS expression resulted in nuclear trapping of p27kip1 in VSMCs. MARCKS knockdown paradoxically increased KIS expression in ECs resulting in increased EC proliferation. MARCKS knockdown significantly attenuated the VSMC proliferative response to vascular injury, but accelerated reestablishment of an intact endothelium. MARCKS is a novel translational target with beneficial cell type-specific effects on both ECs and VSMCs.  相似文献   

16.
The CDK inhibitor p27kip1 is a critical regulator of cell cycle progression, but the mechanisms by which p27kip1 controls cell proliferation in vivo are still not fully elucidated. We recently demonstrated that the microtubule destabilizing protein stathmin is a relevant p27kip1 binding partner. To get more insights into the in vivo significance of this interaction, we generated p27kip1 and stathmin double knock-out (DKO) mice. Interestingly, thorough characterization of DKO mice demonstrated that most of the phenotypes of p27kip1 null mice linked to the hyper-proliferative behavior, such as the increased body and organ weight, the outgrowth of the retina basal layer and the development of pituitary adenomas, were reverted by co-ablation of stathmin. In vivo analyses showed a reduced proliferation rate in DKO compared to p27kip1 null mice, linked, at molecular level, to decreased kinase activity of CDK4/6, rather than of CDK1 and CDK2. Gene expression profiling of mouse thymuses confirmed the phenotypes observed in vivo, showing that DKO clustered with WT more than with p27 knock-out tissue. Taken together, our results demonstrate that stathmin cooperates with p27kip1 to control the early phase of G1 to S phase transition and that this function may be of particular relevance in the context of tumor progression.  相似文献   

17.
Mounting evidence has been shown that integrin-mediated cellular adhesion confers resistance to chemotherapy of multiple myeloma. The molecular mechanism underlying cell adhesion-mediated drug resistance (CAM-DR) is, however, poorly understood. In this report, we demonstrated that RPMI 8,226 cells accumulated p27Kip1 in the nucleus when they were adhered to fibronectin (FN). The adhesion-mediated p27Kip1 nuclear recruitment was regulated via the down-regulation of Jab1, a negative regulator of cell cycle. Overexpression of Jab1 reversed the elevated p27Kip1 in the nucleus, which needed phosphorylation of p27Kip1 on Serine 10, whereas inhibition of Jab1 by siRNA further increased the elevated p27Kip1. Furthermore, we found overexpression of Jab1 did not affect 8,226 cells adhesion to FN, but reversed doxorubicin or mitoxantrone-induced CAM-DR phenotype. In conclusion, our data suggest that Jab1 plays an important role in CAM-DR, which depends on pSer10-p27Kip1-mediated subcellular localization of p27Kip1. The understanding of this novel molecular mechanism may prove valuable in designing new therapeutic approaches for CAM-DR in Multiple myeloma.  相似文献   

18.
19.
Normal hematopoiesis is suppressed during the development of leukemia. In the T-ALL leukemia mouse model described in our recent study (Hu X, et al. Blood 2009), the impacts of leukemic environment on normal hematopoietic stem cells (HSCs) and hematopoietic progenitor cells (HPCs) were distinct, in that normal HSCs were preserved in part because of increased mitotic quiescence of HSCs and resulting exhaustion of HPCs proliferation. Stem cell factor (SCF) secreted by leukemic cells in Nalm6 B-ALL model was previously suggested to force normal HSCs/HPCs out of their bone marrow niches and allow leukemic cells to occupy the niches (Colmone A, et al. Science 2008). Here we found that stem cell factor (SCF) expression in PB and BM of T-ALL model was increased, but SCF mRNA and protein levels in normal hematopoietic cells were higher than those in leukemia cells, which suggested that upregulated SCF was mainly contributed by non-leukemic cells in response to the leukemia development. To further elucidate the molecular mechanisms, microarray analysis was conducted on normal HSCs in this model and verified by real-time RT-PCR. The expression of Hes1 and its downstream target p21 were elevated in normal HSCs, whereas their expression showed no significant alteration in HPCs. Interestingly, although overexpression of Hes1 by retroviral infection inhibited the in vitro colony formation of normal hematopoietic cells, in vivo results demonstrated that normal Lin- cells and HSPCs were better preserved when normal Lin- cells with Hes1 overexpression were co-transplanted with T-ALL leukemia cells. Our results suggested that the differential expression of Hes1 between HSCs and HPCs resulted in the distinct responses of these cells to the leukemic condition, and that overexpression of Hes1 could enhance normal HSPCs in the leukemic environment.  相似文献   

20.
Hematopoietic stem cells (HSCs) are rare quiescent cells that continuously replenish the cellular components of the peripheral blood. Observing that the ataxia-associated gene Ataxin-1-like (Atxn1L) was highly expressed in HSCs, we examined its role in HSC function through in vitro and in vivo assays. Mice lacking Atxn1L had greater numbers of HSCs that regenerated the blood more quickly than their wild-type counterparts. Molecular analyses indicated Atxn1L null HSCs had gene expression changes that regulate a program consistent with their higher level of proliferation, suggesting that Atxn1L is a novel regulator of HSC quiescence. To determine if additional brain-associated genes were candidates for hematologic regulation, we examined genes encoding proteins from autism- and ataxia-associated protein–protein interaction networks for their representation in hematopoietic cell populations. The interactomes were found to be highly enriched for proteins encoded by genes specifically expressed in HSCs relative to their differentiated progeny. Our data suggest a heretofore unappreciated similarity between regulatory modules in the brain and HSCs, offering a new strategy for novel gene discovery in both systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号