首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
NF-κB activity is tightly regulated by IκB class of proteins. IκB proteins possess ankyrin repeats for binding to and inhibiting NF-κB. The regulatory protein, NPR1 from Brassica juncea possesses ankyrin repeats with sequence similarity to IκBα subgroup. Therefore, we examined whether stably expressed BjNPR1 could function as IκB in inhibiting NF-κB in human glioblastoma cell lines. We observed that BjNPR1 bound to NF-κB and inhibited its nuclear translocation. Further, BjNPR1 expression down-regulated the NF-κB target genes iNOS, Cox-2, c-Myc and cyclin D1 and reduced the proliferation rate of U373 cells. Finally, BjNPR1 decreased the levels of pERK, pJNK and PKCα and increased the Caspase-3 and Caspase-8 activities. These results suggested that inhibition of NF-κB activation by BjNPR1 can be a promising therapy in NF-κB dependent pathologies.  相似文献   

5.
6.
Negative regulatory proteins in a cytokine signaling play a critical role in restricting unwanted excess activation of the signaling pathway. At the same time, negative regulatory proteins need to be removed rapidly from cells to respond properly to the next incoming signal. A nuclear IκB protein called IκBNS is known to inhibit a subset of NF-κB target genes upon its expression by NF-κB activation. Here, we show a mechanism to control the stability of mIκBNS which might be important for cells to prepare the next round signaling. We found that mIκBNS is a short-lived protein of which the stability is controlled by proteasome, independent of ubiquitylation process. We identified that the N-terminal PEST sequence in mIκBNS was critical for the regulation of stability.  相似文献   

7.
Natural plant-derived products are commonly applied to treat a broad range of human diseases, including cancer as well as chronic and acute airway inflammation. In this regard, the monoterpene oxide 1,8-cineol, the active ingredient of the clinically approved drug Soledum®, is well-established for the therapy of airway diseases, such as chronic sinusitis and bronchitis, chronic obstructive pulmonary disease and bronchial asthma. Although clinical trials underline the beneficial effects of 1,8-cineol in treating inflammatory diseases, the molecular mode of action still remains unclear.Here, we demonstrate for the first time a 1,8-cineol-depending reduction of NF-κB-activity in human cell lines U373 and HeLa upon stimulation using lipopolysaccharides (LPS). Immunocytochemistry further revealed a reduced nuclear translocation of NF-κB p65, while qPCR and western blot analyses showed strongly attenuated expression of NF-κB target genes. Treatment with 1,8-cineol further led to increased protein levels of IκBα in an IKK-independent matter, while FRET-analyses showed restoring of LPS-associated loss of interaction between NF-κB p65 and IκBα. We likewise observed reduced amounts of phosphorylated c-Jun N-terminal kinase 1/2 protein in U373 cells after exposure to 1,8-cineol. In addition, 1,8-cineol led to decreased amount of nuclear NF-κB p65 and reduction of its target gene IκBα at protein level in human peripheral blood mononuclear cells.Our findings suggest a novel mode of action of 1,8-cineol through inhibition of nuclear NF-κB p65 translocation via IκBα resulting in decreased levels of proinflammatory NF-κB target genes and may therefore broaden the field of clinical application of this natural drug for treating inflammatory diseases.  相似文献   

8.
9.
10.
11.
12.
Type I interferons (IFN) exert multiple effects on both the innate and adaptive immune system in addition to their antiviral and antiproliferative activities. Little is known, however about the direct effects of type I IFNs on germinal center (GC) B cells, the central components of adaptive B cell responses. We used Burkitt's lymphoma (BL) lines, as a model system of normal human GC B cells, to examine the effect of type I IFNs on the expression of BCL-6, the major regulator of the GC reaction. We show that type I IFNs, but not IFNγ, IL-2 and TNFα rapidly down-regulate BCL-6 protein and mRNA expression, in cell lines derived from endemic, but not from sporadic BL. IFNα-induced down-regulation is specific for BCL-6, independent of Epstein-Barr virus and is not accompanied by IRF-4 up-regulation. IFNα-induced BCL-6 mRNA down-regulation does not require de novo protein synthesis and is specifically inhibited by piceatannol. The proteasome inhibitor MG132 non-specifically prevents, while inhibitors of alternate type I IFN signaling pathways do not inhibit IFNα-induced BCL-6 protein downregulation. We validate our results with showing that IFNα rapidly down-regulates BCL-6 mRNA in purified mouse normal GC B cells. Our results identify type I IFNs as the first group of cytokines that can down-regulate BCL-6 expression directly in GC B cells.  相似文献   

13.
14.
15.
16.
17.
Glucocorticoid hormones (GCs) exert an antiproliferative effect on most cells. However, the molecular mechanism is still largely unclear. We investigated the antiproliferative mechanism by GCs in human embryonic kidney 293 cells with stably introduced glucocorticoid receptor (GR) mutants that discriminate between cross-talk with nuclear factor-(kappa)B (NF-(kappa)B) and activator protein-1 signaling, transactivation and transrepression, and antiproliferative vs. non-antiproliferative responses. Using the GR mutants, we here demonstrate a correlation between repression of NF-(kappa)B signaling and antiproliferative response. Gene expression profiling of endogenous genes in cells containing mutant GRs identified a limited number of genes that correlated with the antiproliferative response. This included a GC-mediated up-regulation of the NF-(kappa)B-inhibitory protein I(kappa)B(alpha), in line with repression of NF-(kappa)B signaling being important in the GC-mediated antiproliferative response. Interestingly, the GC-stimulated expression of I(kappa)B(alpha) was a direct effect despite the inability of the GR mutant to transactivate through a GC-responsive element. Selective expression of I(kappa)B(alpha) in human embryonic kidney 293 cells resulted in a decreased percentage of cells in the S/G2/M phase and impaired cell proliferation. These results demonstrate that GC-mediated inhibition of NF-(kappa)B is an important mechanism in the antiproliferative response to GCs.  相似文献   

18.
19.
Tendons have a limited capacity for self-repair due to the low density and mitotic activity of tenocytes. Pro-inflammatory cytokines such as interleukin-1β (IL-1β) have been identified as the main initiators of tendinopathies, stimulating inflammation, apoptosis and extracellular matrix (ECM) degradation. The aim of this study was to evaluate the potential of Tendoactive?, a newly developed proprietary nutraceutical formulation that includes mucopolysaccharides, collagen and vitamin C, in an in vitro model of tendon inflammation. The effects of Tendoactive? were studied in primary cultures of human tenocytes treated with IL-1β for up to 72 h. Expression of collagen type I, integrin β1, cyclo-oxygenase-2 (COX-2), caspase-3 and matrix metalloproteinase-1 (MMP-1) was monitored by western blotting. The effects of Tendoactive? on the expression, phosphorylation and nuclear translocation of protein components of the NF-κB system were studied by western blotting and immunofluorescence respectively. Treatment of tenocytes with Tendoactive? suppressed IL-1β-induced NF-κB activation and p65 nuclear translocation. These events correlated with down-regulation of NF-κB targets including COX-2, MMP-1 and activated caspase-3. Tendoactive? also reversed the IL-1β-induced down-regulation of collagen type I and β1-integrin receptor expression. These results indicate that Tendoactive? has nutraceutical potential as an anti-inflammatory agent for treating tendinopathy through suppression of NF-κB mediated IL-1β catabolic signalling pathways in tenocytes.  相似文献   

20.
1α,25-dihydroxyvitamin D(3) (calcitriol), the bioactive metabolite of vitamin D, modulates the activation and inhibits IgE production of anti-CD40 and IL-4 stimulated human peripheral B cells. Engagement of CD40 results in NF-κB p50 activation, which is essential for the class switch to IgE. Herein, we investigated by which mechanism calcitriol modulates NF-κB mediated activation of human na?ve B cells. Na?ve B cells were predominantly targeted by calcitriol in comparison with memory B cells as shown by pronounced induction of the VDR target gene cyp24a1. Vitamin D receptor activation resulted in a strongly reduced p105/p50 protein and mRNA expression in human na?ve B cells. This effect is mediated by impaired nuclear translocation of p65 and consequently reduced binding of p65 to its binding site in the p105 promoter. Our data indicate that the vitamin D receptor reduces NF-κB activation by interference with NF-κB p65 and p105. Thus, the vitamin D receptor inhibits costimulatory signal transduction in na?ve B cells, namely by reducing CD40 signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号