首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wilz L  Fan W  Zhong Q 《Autophagy》2011,7(10):1249-1250
Membrane trafficking is key for signal transduction, cargo transportation, and in the case of autophagy, delivering cytoplasmic substrates to the lysosome for degradation. Autophagy requires the formation of a unique double membrane vesicle, the autophagosome. However, the mechanism by which the autophagosome forms is unknown. Our recent study focused on the role of Barkor/Atg14(L) in targeting the autophagy-specific class III phosphatidylinositol-3-kinase (PtdIns3KC3) complex to the early autophagosome has implicated this complex in autophagosome formation. This study found that the BATS domain of Barkor targets the PtdIns3KC3 complex to early autophagic structures and senses highly curved membranes enriched in phosphatidylinositol-3-phosphate (PtdIns(3)P). Consequently, this study uncovered an exciting new role for the PtdIns3KC3 complex as a potential inducer of autophagosome formation.  相似文献   

2.
《Autophagy》2013,9(5):713-716
Class III phosphatidylinositol 3-kinase (PI3KC3) plays a pleiotropic role in autophagy and protein sorting pathways. The human core complex of PI3KC3 consists of three major components including PI3KC3/hVps34, p150 and Beclin 1. How the specificity of PI3KC3 complex is derived towards autophagy is not clear. Utilizing a sequential affinity purification coupled with Mass spectrometry approach, we have successfully purified a human Beclin 1 complex and cloned a novel protein we called Barkor (Beclin 1-associated autophagy-related key regulator). The function of Barkor in autophagy has been manifested in several assays, including stress-induced LC3 lipidation, autophagosome formation, and Salmonella typhimurium amplification. Mechanistically, Barkor competes with UV radiation resistance associated gene product (UVRAG) for interaction with Beclin 1, and orients Beclin1 to autophagosomes. Barkor shares considerable sequence homology with Atg14 in yeast, representing an evolutionary conserved autophagy specific regulatory step in early autophagosome formation.  相似文献   

3.
Autophagosome fusion with a lysosome constitutes the last barrier for autophagic degradation. It is speculated that this fusion process is precisely and tightly regulated. Recent genetic evidence suggests that a set of SNARE proteins, including STX17, SNAP29, and VAMP8, are essential for the fusion between autophagosomes and lysosomes. However, it remains unclear whether these SNAREs are fusion competent and how their fusogenic activity is specifically regulated during autophagy. Using a combination of biochemical, cell biology, and genetic approaches, we demonstrated that fusogenic activity of the autophagic SNARE complex is temporally and spatially controlled by ATG14/Barkor/Atg14L, an essential autophagy-specific regulator of the class III phosphatidylinositol 3-kinase complex (PtdIns3K). ATG14 directly binds to the STX17-SNAP29 binary complex on autophagosomes and promotes STX17-SNAP29-VAMP8-mediated autophagosome fusion with lysosomes. ATG14 homo-oligomerization is required for SNARE binding and fusion promotion, but is dispensable for PtdIns3K stimulation and autophagosome biogenesis. Consequently, ATG14 homo-oligomerization is required for autophagosome fusion with a lysosome, but is dispensable for autophagosome biogenesis. These data support a key role of ATG14 in controlling autophagosome fusion with a lysosome.  相似文献   

4.
《Autophagy》2013,9(2):150-163
Autophagy is mediated by a unique organelle, the autophagosome, which encloses a portion of the cytoplasm for delivery to the lysosome. Phosphatidylinositol 3-phosphate (PtdIns3P) produced by the class III phosphatidylinositol 3-kinase (PtdIns3K) complex is essential for canonical autophagosome formation. RAB5A, a small GTPase localized to early endosomes, has been shown to associate with the class III PtdIns3K complex, regulate its activity and promote autophagosome formation. However, little is known about how endosome-localized RAB5A functions with the class III PtdIns3K complex. Here we identified a novel endoplasmic reticulum (ER)-localized transmembrane protein, ER membrane protein complex subunit 6 (EMC6), which interacted with both RAB5A and BECN1/Beclin 1 and colocalized with the omegasome marker ZFYVE1/DFCP1. It was shown to regulate autophagosome formation, and its deficiency caused the accumulation of autophagosomal precursor structures and impaired autophagy. Our study showed for the first time that EMC6 is a novel regulator involved in autophagy.  相似文献   

5.
Lu Q  Yang P  Huang X  Hu W  Guo B  Wu F  Lin L  Kovács AL  Yu L  Zhang H 《Developmental cell》2011,21(2):343-357
PtdIns(3)P plays critical roles in the autophagy pathway. However, little is known about how PtdIns(3)P effectors act with autophagy proteins in autophagosome formation. Here we identified an essential autophagy gene in C.?elegans, epg-6, which encodes a WD40 repeat-containing protein with PtdIns(3)P-binding activity. EPG-6 directly interacts with ATG-2. epg-6 and atg-2 regulate progression of omegasomes to autophagosomes, and their loss of function?causes accumulation of enlarged early autophagic structures. Another WD40 repeat PtdIns(3)P effector, ATG-18, plays a distinct role in autophagosome formation. We also established the hierarchical relationship of autophagy genes in degradation of?protein aggregates and revealed that the UNC-51/Atg1 complex, EPG-8/Atg14, and binding of lipidated LGG-1 to protein aggregates are required for?omegasome formation. Our study demonstrates that autophagic PtdIns(3)P effectors play distinct roles in autophagosome formation and also provides?a framework for understanding the concerted action of autophagy genes in protein aggregate degradation.  相似文献   

6.
Yin X  Cao L  Peng Y  Tan Y  Xie M  Kang R  Livesey KM  Tang D 《Autophagy》2011,7(10):1242-1244
Autophagy and apoptosis are tightly regulated biological processes that are crucial for cell growth, development and tissue homeostasis. UVRAG (UV radiation resistance-associated gene), a mammalian homolog of yeast Vps38, activates the Beclin 1/PtdIns3KC3 (class III phosphatidylinositol-3-kinase) complex, which promotes autophagosome formation. Moreover, UVRAG promotes autophagosome maturation by recruiting class C Vps complexes (HOPS complexes) and Rab7 of the late endosome. We found that UVRAG has anti-apoptotic activity during tumor therapy through interactions with Bax. UVRAG inhibits Bax translocation from the cytosol to mitochondria during chemotherapy- or UV irradiation-induced apoptosis of human tumor cells. Moreover, deletion of the UVRAG C2 domain abolishes Bax binding and anti-apoptotic activity. These results suggest that, in addition to its previously recognized pro-autophagy activity in response to starvation, UVRAG has cytoprotective functions in the cytosol that control the localization of Bax in tumor cells exposed to apoptotic stimuli.  相似文献   

7.
《Autophagy》2013,9(10):1242-1244
Autophagy and apoptosis are tightly regulated biological processes that are crucial for cell growth, development and tissue homeostasis. UVRAG (UV radiation resistance-associated gene), a mammalian homolog of yeast Vps38, activates the Beclin 1/PtdIns3KC3 (class III phosphatidylinositol-3-kinase) complex, which promotes autophagosome formation. Moreover, UVRAG promotes autophagosome maturation by recruiting class C Vps complexes (HOPS complexes) and Rab7 of the late endosome. We found that UVRAG has anti-apoptotic activity during tumor therapy through interactions with Bax. UVRAG inhibits Bax translocation from the cytosol to mitochondria during chemotherapy- or UV irradiation-induced apoptosis of human tumor cells. Moreover, deletion of the UVRAG C2 domain abolishes Bax binding and anti-apoptotic activity. These results suggest that, in addition to its previously recognized pro-autophagy activity in response to starvation, UVRAG has cytoprotective functions in the cytosol that control the localization of Bax in tumor cells exposed to apoptotic stimuli.  相似文献   

8.
Autophagosome formation is promoted by the PI3 kinase complex and negatively regulated by myotubularin phosphatases, indicating that regulation of local phosphatidylinositol 3‐phosphate (PtdIns3P) levels is important for this early phase of autophagy. Here, we show that the Caenorhabditis elegans myotubularin phosphatase MTM‐3 catalyzes PtdIns3P turnover late in autophagy. MTM‐3 acts downstream of the ATG‐2/EPG‐6 complex and upstream of EPG‐5 to promote autophagosome maturation into autolysosomes. MTM‐3 is recruited to autophagosomes by PtdIns3P, and loss of MTM‐3 causes increased autophagic association of ATG‐18 in a PtdIns3P‐dependent manner. Our data reveal critical roles of PtdIns3P turnover in autophagosome maturation and/or autolysosome formation.  相似文献   

9.
Obara K  Ohsumi Y 《Autophagy》2008,4(7):952-954
Phosphorylation of phosphatidylinositol (PtdIns) by PtdIns 3-kinase is essential for autophagy. However, the distribution and function of the enzymatic product, PtdIns 3-phosphate (PtdIns(3)P), has been unknown. We monitored PtdIns(3)P distribution during autophagy by live imaging, biochemistry, and electron microscopy, and found that PtdIns(3)P is massively delivered into the vacuole via autophagy. PtdIns(3)P is highly enriched as a membrane component of the elongating isolation membranes and autophagosome membranes rather than as an enclosed cargo, implying direct involvement of PtdIns(3)P in autophagosome formation. This observation also provides important basic information on the nature of the autophagosome membrane, which is still poorly understood. Notably, PtdIns(3)P is highly enriched on the inner (concave) surfaces of the isolation membrane and autophagosome compared to the outer surfaces. PtdIns(3)P is also enriched on ambiguous structures juxtaposed to the elongating tips of isolation membranes. We also investigated the function of PtdIns(3)P in autophagy, and show that PtdIns(3)P recruits the Atg18-Atg2 complex to autophagic membranes through an Atg18-PtdIns(3)P interaction. Interestingly, PtdIns(3)P is required only for the association of the Atg18-Atg2 complex to autophagic membranes but not for any subsequent functional activity of the Atg18-Atg2 complex, suggesting that PtdIns(3)P does not act allosterically on Atg18. Based on these results we discuss the function of PtdIns(3)P in autophagy.  相似文献   

10.
《Autophagy》2013,9(4):506-522
Autophagosome formation is a complex process that begins with the nucleation of a pre-autophagosomal structure (PAS) that expands into a phagophore or isolation membrane, the precursor of the autophagosome. A key event in the formation of the phagophore is the production of PtdIns3P by the phosphatidylinsitol kinase Vps34. In yeast the two closely related proteins, Atg18 and Atg21, are the only known effectors of PtdIns3P that act in the autophagy pathway. The recruitment of Atg18 or Atg21 to the PAS is an essential step in the formation of the phagophore. Our bioinformatic analysis of the Atg18 and Atg21 orthologues in all eukaryotes shows that WIPI1 and WIPI2 are both mammalian orthologues of Atg18. We show that WIPI2 is a mammalian effector of PtdIns3P and is ubiquitously expressed in a variety of cell lines. WIPI2 is recruited to early autophagosomal structures along with Atg16L and ULK1 and is required for the formation of LC3-positive autophagosomes. Furthermore, when WIPI2 is depleted, we observe a remarkable accumulation of omegasomes, ER-localized PtdIns3P-containing structures labeled by DFCP1 (double FYVE domain-containing protein 1), which are thought to act as platforms for autophagosome formation. In view of our data we propose a role for WIPI2 in the progression of omegasomes into autophagosomes.  相似文献   

11.
The autophagy core machinery is essentially conserved in eukaryotic cells for autophagy regulation. However, the underlying mechanisms for autophagosome formation in plant cells remain elusive. We have recently demonstrated that SH3 domain-containing protein 2 (SH3P2), a BAR (Bin-Amphiphysin-Rvs) domain protein, functions as a novel regulator for autophagosome biogenesis in Arabidopsis thaliana. Using SH3P2 and its GFP fusion as probes, we have characterized the dynamics and structures of autophagosome formation in plant cells. The phagophore assembly site, marked by SH3P2, is identified as having a close connection with the ER. SH3P2 also binds to phosphatidylinositol 3-phosphate (PtdIns3P) and functions downstream of the phosphatidylinositol 3-kinase (PtdIns3K) complex. Thus, SH3P2 serves as a novel membrane-associated protein in regulating autophagosome formation in Arabidopsis thaliana.  相似文献   

12.
Lafora progressive myoclonus epilepsy is a fatal rare neurodegenerative disorder characterized by the accumulation of insoluble abnormal glycogen deposits in the brain and peripheral tissues. Mutations in at least two genes are responsible for the disease: EPM2A, encoding the glucan phosphatase laforin, and EPM2B, encoding the RING-type E3-ubiquitin ligase malin. Both laforin and malin form a functional complex in which laforin recruits the substrates to be ubiquitinated by malin. We and others have described that, in cellular and animal models of this disease, there is an autophagy impairment which leads to the accumulation of dysfunctional mitochondria. In addition, we established that the autophagic defect occurred at the initial steps of autophagosome formation. In this work, we present evidence that in cellular models of the disease there is a decrease in the amount of phosphatidylinositol-3P. This is probably due to defective regulation of the autophagic PI3KC3 complex, in the absence of a functional laforin/malin complex. In fact, we demonstrate that the laforin/malin complex interacts physically and co-localizes intracellularly with core components of the PI3KC3 complex (Beclin1, Vps34 and Vps15), and that this interaction is specific and results in the polyubiquitination of these proteins. In addition, the laforin/malin complex is also able to polyubiquitinate ATG14L and UVRAG. Finally, we show that overexpression of the laforin/malin complex increases PI3KC3 activity. All these results suggest a new role of the laforin/malin complex in the activation of autophagy via regulation of the PI3KC3 complex and explain the defect in autophagy described in Lafora disease.  相似文献   

13.
ULK1 (unc-51 like autophagy activating kinase 1), the key mediator of MTORC1 signaling to autophagy, regulates early stages of autophagosome formation in response to starvation or MTORC1 inhibition. How ULK1 regulates the autophagy induction process remains elusive. Here, we identify that ATG13, a binding partner of ULK1, mediates interaction of ULK1 with the ATG14-containing PIK3C3/VPS34 complex, the key machinery for initiation of autophagosome formation. The interaction enables ULK1 to phosphorylate ATG14 in a manner dependent upon autophagy inducing conditions, such as nutrient starvation or MTORC1 inhibition. The ATG14 phosphorylation mimics nutrient deprivation through stimulating the kinase activity of the class III phosphatidylinositol 3-kinase (PtdIns3K) complex and facilitates phagophore and autophagosome formation. By monitoring the ATG14 phosphorylation, we determined that the ULK1 activity requires BECN1/Beclin 1 but not the phosphatidylethanolamine (PE)-conjugation machinery and the PIK3C3 kinase activity. Monitoring the phosphorylation also allowed us to identify that ATG9A is required to suppress the ULK1 activity under nutrient-enriched conditions. Furthermore, we determined that ATG14 phosphorylation depends on ULK1 and dietary conditions in vivo. These results define a key molecular event for the starvation-induced activation of the ATG14-containing PtdIns3K complex by ULK1, and demonstrate hierarchical relations between the ULK1 activation and other autophagy proteins involved in phagophore formation.  相似文献   

14.
Autophagy is an intracellular degradation system by which cytoplasmic materials are enclosed by an autophagosome and delivered to a lysosome/vacuole. Atg18 plays a critical role in autophagosome formation as a complex with Atg2 and phosphatidylinositol 3-phosphate (PtdIns(3)P). However, little is known about the structure of Atg18 and its recognition mode of Atg2 or PtdIns(3)P. Here, we report the crystal structure of Kluyveromyces marxianus Hsv2, an Atg18 paralog, at 2.6 Å resolution. The structure reveals a seven-bladed β-propeller without circular permutation. Mutational analyses of Atg18 based on the K. marxianus Hsv2 structure suggested that Atg18 has two phosphoinositide-binding sites at blades 5 and 6, whereas the Atg2-binding region is located at blade 2. Point mutations in the loops of blade 2 specifically abrogated autophagy without affecting another Atg18 function, the regulation of vacuolar morphology at the vacuolar membrane. This architecture enables Atg18 to form a complex with Atg2 and PtdIns(3)P in parallel, thereby functioning in the formation of autophagosomes at autophagic membranes.  相似文献   

15.
《Autophagy》2013,9(5):933-935
Phosphatidylinositol 3-phosphate (PtdIns3P) is a phospholipid essential for autophagy, but the detailed distribution of PtdIns3P in the membrane of autophagosomes, autophagic bodies, and other organelles is unclear due to technical difficulties. In the present study, we examined PtdIns3P distribution in autophagic membranes with an electron microscopy method called the quick-freeze freeze-fracture replica labeling method (QF-FRL), which can define the distribution of membrane lipids at the nanometer scale. In this method, membranes are split into 2 leaflets so that membrane asymmetry, i.e., differences between the 2 leaflets, can be defined unambiguously. As a result, PtdIns3P in the yeast autophagosome was found to exist much more abundantly in the lumenal leaflet (i.e., the leaflet facing the space between the outer and inner autophagosomal membranes) than in the cytoplasmic leaflet. In contrast, PtdIns3P in the mammalian autophagosome was confined to the cytoplasmic leaflet, showing an opposite asymmetry from that found in yeast. In yeast deleted for 2 cytoplasmic PtdIns3P phosphatases, Ymr1 and Sjl3, PtdIns3P distributed in an equivalent density in the 2 leaflets of the autophagosome membrane, suggesting that the asymmetry in wild-type yeast is generated as a result of unilateral PtdIns3P hydrolysis. The contrasting PtdIns3P distribution revealed in the present study suggested that formation of autophagic membranes may proceed in different ways in yeast and mammals.  相似文献   

16.
Phosphatidylinositol 4‐phophate (PtdIns(4)P) is an essential signaling molecule in the Golgi body, endosomal system, and plasma membrane and functions in the regulation of membrane trafficking, cytoskeletal organization, lipid metabolism and signal transduction pathways, all mediated by direct interaction with PtdIns(4)P‐binding proteins. PtdIns(4)P was recently reported to have functional roles in autophagosome biogenesis. LC3 and GABARAP subfamilies and a small GTP‐binding protein, Rab7, are localized on autophagosomal membranes and participate at each stage of autophagosome formation and maturation. To better understand autophagosome biogenesis, it is essential to determine the localization of PtdIns(4)P and to examine its relationship with LC3 and GABARAP subfamilies and Rab7. To analyze PtdIns(4)P distribution, we used an electron microscopy technique that labels PtdIns(4)P on the freeze‐fracture replica of intracellular biological membranes, which minimizes the possibility of artificial perturbation because molecules in the membrane are physically immobilized in situ. Using this technique, we found that PtdIns(4)P is localized on the cytoplasmic, but not the luminal (exoplasmic), leaflet of the inner and outer membranes of autophagosomes. Double labeling revealed that PtdIns(4)P mostly colocalizes with Rab7, but not with LC3B, GABARAP, GABARAPL1 and GABARAPL2. Rab7 plays essential roles in autophagosome maturation and in autophagosome‐lysosome fusion events. We suggest that PtdIns(4)P is localized to the cytoplasmic leaflet of the autophagosome at later stages, which may illuminate the importance of PtdIns(4)P at the later stages of autophagosome formation.   相似文献   

17.
Phosphatidylinositol 3-phosphate (PtdIns3P) is a phospholipid essential for autophagy, but the detailed distribution of PtdIns3P in the membrane of autophagosomes, autophagic bodies, and other organelles is unclear due to technical difficulties. In the present study, we examined PtdIns3P distribution in autophagic membranes with an electron microscopy method called the quick-freeze freeze-fracture replica labeling method (QF-FRL), which can define the distribution of membrane lipids at the nanometer scale. In this method, membranes are split into 2 leaflets so that membrane asymmetry, i.e., differences between the 2 leaflets, can be defined unambiguously. As a result, PtdIns3P in the yeast autophagosome was found to exist much more abundantly in the lumenal leaflet (i.e., the leaflet facing the space between the outer and inner autophagosomal membranes) than in the cytoplasmic leaflet. In contrast, PtdIns3P in the mammalian autophagosome was confined to the cytoplasmic leaflet, showing an opposite asymmetry from that found in yeast. In yeast deleted for 2 cytoplasmic PtdIns3P phosphatases, Ymr1 and Sjl3, PtdIns3P distributed in an equivalent density in the 2 leaflets of the autophagosome membrane, suggesting that the asymmetry in wild-type yeast is generated as a result of unilateral PtdIns3P hydrolysis. The contrasting PtdIns3P distribution revealed in the present study suggested that formation of autophagic membranes may proceed in different ways in yeast and mammals.  相似文献   

18.
Atg9 is a transmembrane protein essential for autophagy which cycles between the Golgi network, late endosomes and LC3-positive autophagosomes in mammalian cells during starvation through a mechanism that is dependent on ULK1 and requires the activity of the class III phosphatidylinositol-3-kinase (PI3KC3). In this study, we demonstrate that the N-BAR-containing protein, Bif-1, is required for Atg9 trafficking and the fission of Golgi membranes during the induction of autophagy. Upon starvation, Atg9-positive membranes undergo continuous tubulation and fragmentation to produce cytoplasmic punctate structures that are positive for Rab5, Atg16L and LC3. Loss of Bif-1 or inhibition of the PI3KC3 complex II suppresses starvation-induced fission of Golgi membranes and peripheral cytoplasmic redistribution of Atg9. Moreover, Bif-1 mutants, which lack the functional regions of the N-BAR domain that are responsible for membrane binding and/or bending activity, fail to restore the fission of Golgi membranes as well as the formation of Atg9 foci and autophagosomes in Bif-1-deficient cells starved of nutrients. Taken together, these findings suggest that Bif-1 acts as a critical regulator of Atg9 puncta formation presumably by mediating Golgi fission for autophagosome biogenesis during starvation.  相似文献   

19.
Autophagy is a catabolic process that delivers cytoplasmic material to the lysosome for degradation. The mechanisms regulating autophagosome formation and size remain unclear. Here, we show that autophagosome formation was triggered by the overexpression of a dominant‐negative inactive mutant of Myotubularin‐related phosphatase 3 (MTMR3). Mutant MTMR3 partially localized to autophagosomes, and PtdIns3P and two autophagy‐related PtdIns3P‐binding proteins, GFP‐DFCP1 and GFP‐WIPI‐1α (WIPI49/Atg18), accumulated at sites of autophagosome formation. Knock‐down of MTMR3 increased autophagosome formation, and overexpression of wild‐type MTMR3 led to significantly smaller nascent autophagosomes and a net reduction in autophagic activity. These results indicate that autophagy initiation depends on the balance between PI 3‐kinase and PI 3‐phosphatase activity. Local levels of PtdIns3P at the site of autophagosome formation determine autophagy initiation and the size of the autophagosome membrane structure.  相似文献   

20.
Receptor-mediated endocytosis via clathrin-coated vesicles has been extensively studied and, while many of the protein players have been identified, much remains unknown about the regulation of coat assembly and the mechanisms that drive vesicle formation [1]. Some components of the endocytic machinery interact with inositol polyphosphates and inositol lipids in vitro, implying a role for phosphatidylinositols in vivo [2] and [3]. Specifically, the adaptor protein complex AP2 binds phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P2), PtdIns(3)P, PtdIns(3,4,5)P3 and inositol phosphates. Phosphatidylinositol binding regulates AP2 self-assembly and the interactions of AP2 complexes with clathrin and with peptides containing endocytic motifs [4] and [5]. The GTPase dynamin contains a pleckstrin homology (PH) domain that binds PtdIns(4,5)P2 and PtdIns(3,4,5)P3 to regulate GTPase activity in vitro [6] and [7]. However, no direct evidence for the involvement of phosphatidylinositols in clathrin-mediated endocytosis exists to date. Using well-characterized PH domains as high affinity and high specificity probes in combination with a perforated cell assay that reconstitutes coated vesicle formation, we provide the first direct evidence that PtdIns(4,5)P2 is required for both early and late events in endocytic coated vesicle formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号