首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The growth suppressor protein p53 plays a main part in cellular growth control. Two of its key functions are sequence specific DNA binding and transactivation. Functions of p53 in growth control are regulated at least in part by its interaction with protein kinases. p53 binds to protein kinase CK2, formerly known as casein kinase 2, and it is phosphorylated by this enzyme. CK2 is composed of two regulating beta-subunits and two catalytic alpha- or alpha'-subunits and the interaction with p53 is mediated by the regulatory beta-subunit of CK2. Recently we showed that the beta-subunit could inhibit the sequence specific DNA binding activity of p53 in vitro. Based on this finding, we asked if a coexpression of the beta-subunit of CK2 with p53 in mammalian cells could inhibit the DNA binding activity of p53 in a physiological context. We found that the coexpression of the beta-subunit showed the same inhibitory effect as in the previous assays with purified proteins. Then, we investigated the effects of the coexpression of the beta-subunit of CK2 on the transactivation and transrepression activity of p53. We found that transactivation of the mdm2, p21(WAF1/CIP1) and cyclin G promoter was inhibited in three different cell lines whereas transactivation of the bax promoter was not affected in COS1 cells but down-regulated in MCO1 and SaosS138V21 cells. p53 mediated transrepression of the fos promoter was not influenced by coexpression of the CK2 beta-subunit. Taken together we propose a cell type dependent fine regulation of the p53 transactivation function by the CK2 beta-subunit in vivo, which does not affect p53 mediated transrepression.  相似文献   

3.
4.
AMP-activated protein kinase induces a p53-dependent metabolic checkpoint   总被引:12,自引:0,他引:12  
Replicative cell division is an energetically demanding process that can be executed only if cells have sufficient metabolic resources to support a doubling of cell mass. Here we show that proliferating mammalian cells have a cell-cycle checkpoint that responds to glucose availability. The glucose-dependent checkpoint occurs at the G(1)/S boundary and is regulated by AMP-activated protein kinase (AMPK). This cell-cycle arrest occurs despite continued amino acid availability and active mTOR. AMPK activation induces phosphorylation of p53 on serine 15, and this phosphorylation is required to initiate AMPK-dependent cell-cycle arrest. AMPK-induced p53 activation promotes cellular survival in response to glucose deprivation, and cells that have undergone a p53-dependent metabolic arrest can rapidly reenter the cell cycle upon glucose restoration. However, persistent activation of AMPK leads to accelerated p53-dependent cellular senescence. Thus, AMPK is a cell-intrinsic regulator of the cell cycle that coordinates cellular proliferation with carbon source availability.  相似文献   

5.
6.
The role of the checkpoint kinase 2 (Chk2) as an upstream activator of p53 following DNA damage has been controversial. We have recently shown that Chk2 and the DNA-dependent protein kinase (DNA-PK) are both involved in DNA damage-induced apoptosis but not G(1) arrest in mouse embryo fibroblasts. Here we demonstrate that Chk2 is required to activate p53 in vitro as measured by its ability to bind its consensus DNA target sequence following DNA damage and is in fact the previously unidentified factor working synergistically with DNA-PK to activate p53. The gene mutated in ataxia telangiectasia is not involved in this p53 activation. Using wortmannin, serine 15 mutants of p53, DNA-PK null cells and Chk2 null cells, we demonstrate that DNA-PK and Chk2 act independently and sequentially on p53. Furthermore, the p53 target of these two kinases represents a latent (preexisting) population of p53. Taken together, the results from these studies are consistent with a model in which DNA damage causes an immediate and sequential modification of latent p53 by DNA-PK and Chk2, which under appropriate conditions can lead to apoptosis.  相似文献   

7.
8.
Duan S  Yao Z  Hou D  Wu Z  Zhu WG  Wu M 《The EMBO journal》2007,26(13):3062-3074
Although the recently identified Pirh2 protein is known as a p53-induced ubiquitin-protein E3 ligase, which negatively regulates p53, the detailed mechanism underlying the regulation of Pirh2 remains largely unknown. Here, we demonstrate that while Pirh2 is mostly detected in the phosphorylated form in normal tissues, it is predominantly present in the unphosphorylated form in majority of tumor cell lines and tissues examined. Phosphorylated Pirh2 is far more unstable than its unphosphorylated form. We further identified that Calmodulin-dependent kinase II (CaMK II) phosphorylates Pirh2 on residues Thr-154 and Ser-155. Phosphorylation of Pirh2 appears to be regulated through cell cycle-dependent mechanism. CaMK II-mediated Pirh2 phosphorylation abrogates its E3 ligase activity toward p53. Together, our data suggest that phosphorylation of Pirh2 may act as a fine-tuning to maintain the balance of p53-Pirh2 autoregulatory feedback loop, which facilitates the tight regulation of p53 stability and tumor suppression.  相似文献   

9.
The gene encoding p53 mediates a major tumor suppression pathway that is frequently altered in human cancers. p53 function is kept at a low level during normal cell growth and is activated in response to various cellular stresses. The MDM2 oncoprotein plays a key role in negatively regulating p53 activity by either direct repression of p53 transactivation activity in the nucleus or promotion of p53 degradation in the cytoplasm. DNA damage and oncogenic insults, the two best-characterized p53-dependent checkpoint pathways, both activate p53 through inhibition of MDM2. Here we report that the human homologue of MDM2, HDM2, binds to ribosomal protein L11. L11 binds a central region in HDM2 that is distinct from the ARF binding site. We show that the functional consequence of L11-HDM2 association, like that with ARF, results in the prevention of HDM2-mediated p53 ubiquitination and degradation, subsequently restoring p53-mediated transactivation, accumulating p21 protein levels, and inducing a p53-dependent cell cycle arrest by canceling the inhibitory function of HDM2. Interference with ribosomal biogenesis by a low concentration of actinomycin D is associated with an increased L11-HDM2 interaction and subsequent p53 stabilization. We suggest that L11 functions as a negative regulator of HDM2 and that there might exist in vivo an L11-HDM2-p53 pathway for monitoring ribosomal integrity.  相似文献   

10.
The VHL (von Hippel-Lindau) tumour-suppressor protein forms a multi-protein complex [VCB (pVHL-elongin C-elongin B)-Cul-2 (Cullin-2)] with elongin C, elongin B, Cul-2 and Rbx1, acting as a ubiquitin-ligase (E3) and directing proteasome-dependent degradation of targeted proteins. The alpha-subunit of Hif1alpha (hypoxia-inducible factor 1alpha) is the principal substrate for the VCB-Cul-2 complex; however, other substrates such as aPKC (atypical protein kinase C) have been reported. In the present study, we show with FRET (fluorescence resonance energy transfer) analysis measured by FLIM (fluorescence lifetime imaging microscopy) that PKCdelta and pVHL (VHL protein) interact directly in cells. This occurs through the catalytic domain of PKCdelta (residues 432-508), which appears to interact with two regions of pVHL, residues 113-122 and 130-154. Despite this robust interaction, analysis of the PMA-induced proteasome-dependent degradation of PKCdelta in different RCC (renal cell carcinoma) lines (RCC4, UMRC2 and 786 O) shows that there is no correlation between the degradation of PKCdelta and the presence of active pVHL. Thus, in contrast with aPKC, PKCdelta is not a conventional substrate of the ubiquitin-ligase complex, VCB-Cul-2, and the observed interaction between these two proteins must underlie a distinct signalling output.  相似文献   

11.
Previous studies from our laboratory had indicated that cytochrome c-independent processing and activation of caspase-9 by caspase-8 contributed to early amplification of the caspase cascade in tumor necrosis factor (TNF)-alpha-treated murine cells. Here we show that murine caspase-9 is phosphorylated by casein kinase 2 (CK2) on a serine near the site of caspase-8 cleavage. CK2 has been shown to regulate cleavage of the pro-apoptotic Bid protein by phosphorylating serine residues near its caspase-8 cleavage site. Similarly, CK2 modification of Ser(348) on caspase-9 appears to render the protease refractory to cleavage by active caspase-8. This phosphorylation did not affect the ability of caspase-9 to autoprocess. Substitution of Ser(348) abolished phosphorylation but not cleavage, and a phospho-site mutant promoted apoptosis in TNF-alpha-treated caspase-9 knock-out mouse embryo fibroblasts. Furthermore, inhibition of CK2 activity and RNA interference-mediated knockdown of the kinase accelerated caspase-9 activation, whereas phosphatase inhibition delayed both caspase-9 activation and death in response to TNF receptor occupation. Taken together, these studies show that TNF receptor cross-linking promotes dephosphorylation of caspase-9, rendering it susceptible to processing by activated caspase-8 protein. Thus, our data suggest that modification of procaspase-9 to protect it from inappropriate cleavage and activation is yet another mechanism by which the oncogenic kinase CK2 promotes survival.  相似文献   

12.
The tyrosine kinase c-Abl is implicated in a variety of cellular processes that are tightly regulated by c-Abl kinase activity and/or by interactions between c-Abl and other signaling molecules. The interaction of c-Abl with the Abl interactor protein Abi2 is shown to be negatively regulated by phosphorylation of serines 637 and 638. These serines are adjacent to the PxxP motif (PTPPKRS637S638SFR) that binds the SH3 domain of Abi. Phosphorylation of the Abl 593-730 fragment by Pak2 dramatically reduces Abi2 binding ( approximately 90%). Mutation of serines 637-639 to alanine (3A) or aspartate (3D) results in an increased tyrosine kinase activity of c-Abl 3D, and a slight reduction of the activity of the 3A mutant, as compared to wild-type (WT) c-Abl. The interaction between Abi2 and c-Abl 3D is inhibited by 80%, as compared to WT c-Abl or c-Abl 3A. This is accompanied by a 2-fold increase in binding of Crk to c-Abl 3D. The data indicate a molecular mechanism whereby phosphorylation of c-Abl by Pak2 inhibits the interaction between the SH3 domain of Abi2 and the PxxP motif of c-Abl. This phosphorylation enhances the association of c-Abl with the substrate Crk and increases c-Abl-mediated phosphorylation of Crk, thus altering the association of Crk with other signaling molecules.  相似文献   

13.
Phosphorylation of p36 in vitro by protein kinase C   总被引:1,自引:0,他引:1  
The 36kDa subunit of protein I (p36) is a major substrate of several tyrosine protein kinases. Here we demonstrate that protein kinase C catalyzes the incorporation of 1.7 moles of phosphate per mole of protein I. Phosphorylation is absolutely dependent on the presence of both calcium and phospholipid, and is specific for serine and threonine residues. Phosphorylation of protein I by the c-AMP dependent protein kinase, phosphorylase kinase, casein kinase I, and casein kinase II was not observed. The in vivo significance of protein kinase C dependent phosphorylation of p36 is discussed.  相似文献   

14.
We recently characterized the interaction between poly(ADP-ribose) polymerase-1 (PARP-1) and the product of the tumor suppressor gene p53. We investigated which domains of human PARP-1 and of human wild-type (wt) p53 were involved in this protein-protein interaction. We generated baculoviral constructs encoding full length or distinct functional domains of both proteins. Full length PARP-1 was simultaneously coexpressed in insect cells with full length wt p53 protein or its distinct truncated fragments and vice versa. Reciprocal immunoprecipitation of Sf9 cell lysates revealed that the central and carboxy-terminal fragments of p53 were sufficient to confer binding to PARP-1, whereas the amino-terminal part harboring the transactivation functional domain was dispensable. On the other hand, the amino-terminal and central fragments of PARP-1 were necessary for complex formation with p53 protein. As the most important features of p53 protein are regulated by phosphorylation, we addressed the question of whether its phosphorylation is essential for binding between the two proteins. Baculovirally expressed wt p53 was post-translationally modified. At least six distinct p53 isomeres were resolved by immunoblotting following two-dimensional separation of baculovirally expressed wt p53 protein. Using specific phospho-serine antibodies, we identified phosphorylation of baculovirally expressed p53 protein at five distinct sites. To define the role of p53 phosphorylation, pull-down assays using untreated and dephosphorylated p53 protein were performed. Dephosphorylated p53 failed to bind PARP-1 indicating that complex formation between both proteins is regulated by phosphorylation of p53. The marked phosphorylation of p53 at Ser392 observed in unstressed cells suggests that the phosphorylated carboxy-terminal part of p53 undergoes complex formation with PARP-1 resulting in masking of the NES and thereby preventing its export. The functional significance of the interaction between both proteins was investigated at two different conditions: inactivation of PARP-1 and overexpression of PARP-1. Our results unequivocally show that the presence of PARP-1 regulates the basal expression of wt p53 in unstressed cells.  相似文献   

15.
The growth suppressor protein p53 and the protein kinase CK2 are both implicated in cellular growth regulation. We previously found that p53 binds to protein kinase CK2 via its regulatory beta-subunit. In the present study, we analyzed the consequences of the binding of p53 to CK2 for the enzymatic activity of CK2 in vitro and in vivo. We found that the carboxy-terminus of p53 which is a potent transforming agent stimulated CK2 activity whereas full length wild-type p53 which is a growth suppressor inhibited the activity of protein kinase CK2. Inhibition of protein kinase CK2 by p53 was dose-dependent and was seen for various CK2 substrates. Experiments with heat-denatured p53 and the conformational mutant p53(R175H) revealed that an intact conformation of p53 seemed to be necessary. Transfection of wild-type and of mutant p53 into p53-/- cells showed that the inhibition of p53 on CK2 activity was also detectable in intact cells and specific for wild-type p53 indicating that the growth suppressing function of p53 might at least be partially achieved by down-regulation of protein kinase CK2.  相似文献   

16.
Questioning the role of checkpoint kinase 2 in the p53 DNA damage response   总被引:7,自引:0,他引:7  
Cdc25C and p53 have been reported to be physiological targets of checkpoint kinase 2 (Chk2). Surprisingly, although Chk2 purified from DNA damage sustaining cells has dramatically increased ability to phosphorylate Cdc25C when compared with untreated cells, its ability to phosphorylate p53 is weak before treatment, and there is no increase in its activity toward p53 after DNA damage by gamma irradiation or the radiomimetic agent neocarzinostatin. Furthermore, introduction of Chk2 short interfering RNA into three different human tumor cell lines leads to marked reduction of Chk2 protein, but p53 is still stabilized and active after DNA damage. The results with Chk1 short interfering RNA indicate as well that Chk1 does not play a role in human p53 stabilization after DNA damage. Thus, Chk1 and Chk2 are unlikely to be regulators of p53 in at least some human tumor cells. We discuss our results in the context of previous findings demonstrating a requirement for Chk2 in p53 stabilization and activity.  相似文献   

17.
The p53 protein acts a tumor suppressor by inducing cell cycle arrest and apoptosis in response to DNA damage or oncogene activation. Recently, it has been proposed that phosphorylation of serine 15 in human p53 by ATM (mutated in ataxia telangiectasia) kinase induces p53 activity by interfering with the Mdm2-p53 complex formation and inhibiting Mdm2-mediated destabilization of p53. Serine 18 in murine p53 has been implicated in mediating an ATM- and ataxia telangiectasia-related kinase-dependent growth arrest. To explore further the physiological significance of phosphorylation of p53 on Ser18, we generated mice bearing a serine-to-alanine mutation in p53. Analysis of apoptosis in thymocytes and splenocytes following DNA damage revealed that phosphorylation of serine 18 was required for robust p53-mediated apoptosis. Surprisingly, p53Ser18 phosphorylation did not alter the proliferation rate of embryonic fibroblasts or the p53-mediated G(1) arrest induced by DNA damage. In addition, endogenous basal levels and DNA damage-induced levels of p53 were not affected by p53Ser18 phosphorylation. p53Ala18 mice developed normally and were not susceptible to spontaneous tumorigenesis, and the reduced apoptotic function of p53Ala18 did not rescue the embryo-lethal phenotype of Mdm2-null mice. These results indicate that phosphorylation of the ATM target site on p53 specifically regulates p53 apoptotic function and further reveal that phosphorylation of p53 serine 18 is not required for p53-mediated tumor suppression.  相似文献   

18.
MdmX binding to ARF affects Mdm2 protein stability and p53 transactivation   总被引:4,自引:0,他引:4  
Regulation of p53 involves a complex network of protein interactions. The primary regulator of p53 protein stability is the Mdm2 protein. ARF and MdmX are two proteins that have recently been shown to inhibit Mdm2-mediated degradation of p53 via distinct associations with Mdm2. We demonstrate here that ARF is capable of interacting with MdmX and in a manner similar to its association with Mdm2, sequestering MdmX within the nucleolus. The sequestration of MdmX by ARF results in an increase in p53 transactivation. In addition, the redistribution of MdmX by ARF requires that a nucleolar localization signal be present on MdmX. Although expression of either MdmX or ARF leads to Mdm2 stabilization, coexpression of both MdmX and ARF results in a decrease in Mdm2 protein levels. Similarly, increasing ARF protein levels in the presence of constant MdmX and Mdm2 leads to a dose-dependent decrease in Mdm2 levels. Under these conditions, ARF can synergistically reverse the ability of Mdm2 and MdmX to inhibit p53-dependent transactivation. Finally, the association and redistribution of MdmX by ARF has no effect on the protein stability of either ARF or MdmX. Taken together, these results demonstrate that the interaction between MdmX and ARF represents a novel pathway for regulating Mdm2 protein levels. Additionally, both MdmX and Mdm2, either individually or together, are capable of antagonizing the effects of the ARF tumor suppressor on p53 activity.  相似文献   

19.
Polo-like kinase 1 (Plk1) plays essential roles during multiple stages of mitosis by phosphorylating a number of substrates. Here, we report that the atypical protein kinase Rio2 is a novel substrate of Plk1 and can be phosphorylated by Plk1 at Ser-335, Ser-380, and Ser-548. Overexpression of Rio2 causes a prolonged mitotic exit whereas knockdown of Rio2 accelerates mitotic progression, suggesting that Rio2 is required for the proper mitotic progression. Overexpression of phospho-mimicking mutant Rio2 S3D but not the nonphosphorylatable mutant Rio2 S3A displays a profile similar to that of wild-type Rio2. These results indicate that the phosphorylation status of Rio2 correlates with its function in mitosis. Furthermore, time-lapse imaging data show that overexpression of Rio2 but not Rio2 S3A results in a slowed metaphase-anaphase transition. Collectively, these findings strongly indicate that the Plk1-mediated phosphorylation of Rio2 regulates metaphase-anaphase transition during mitotic progression.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号