首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Decreased HDL-cholesterol (HDL-C) and familial combined hyperlipidemia (FCHL) are the two most common familial dyslipidemias predisposing to premature coronary heart disease (CHD). These dyslipidemias share many phenotypic features, suggesting a partially overlapping molecular pathogenesis. This was supported by our previous pooled data analysis of the genome scans for low HDL-C and FCHL, which identified three shared chromosomal regions for a qualitative HDL-C trait on 8q23.1, 16q23.3, and 20q13.32. This study further investigates these regions as well as two other loci we identified earlier for premature CHD on 2q31 and Xq24 and a locus for high serum triglycerides (TGs) on 10q11. We analyzed 67 microsatellite markers in an extended study sample of 1,109 individuals from 92 low HDL-C or FCHL families using both qualitative and quantitative lipid phenotypes. These analyses provided evidence for linkage (a logarithm of odds score of 3.2) on 10q11 using a quantitative HDL-C trait. Importantly, this region, previously linked to TGs, body mass index, and obesity, provided evidence for association for quantitative TGs (P = 0.0006) and for a combined trait of HDL-C and TGs (P = 0.008) with marker D10S546. Suggestive evidence for linkage also emerged for HDL-C on 2q31 and for TGs on 20q13.32. Finnish families ascertained for dyslipidemias thus suggest that 10q11, 2q31, and 20q13.32 harbor loci for HDL-C and TGs.  相似文献   

2.
Improved molecular understanding of the pathogenesis of type 2 diabetes is essential if current therapeutic and preventative options are to be extended. To identify diabetes-susceptibility genes, we have completed a primary (418-marker, 9-cM) autosomal-genome scan of 743 sib pairs (573 pedigrees) with type 2 diabetes who are from the Diabetes UK Warren 2 repository. Nonparametric linkage analysis of the entire data set identified seven regions showing evidence for linkage, with allele-sharing LOD scores > or =1.18 (P< or =.01). The strongest evidence was seen on chromosomes 8p21-22 (near D8S258 [LOD score 2.55]) and 10q23.3 (near D10S1765 [LOD score 1.99]), both coinciding with regions identified in previous scans in European subjects. This was also true of two lesser regions identified, on chromosomes 5q13 (D5S647 [LOD score 1.22] and 5q32 (D5S436 [LOD score 1.22]). Loci on 7p15.3 (LOD score 1.31) and 8q24.2 (LOD score 1.41) are novel. The final region showing evidence for linkage, on chromosome 1q24-25 (near D1S218 [LOD score 1.50]), colocalizes with evidence for linkage to diabetes found in Utah, French, and Pima families and in the GK rat. After dense-map genotyping (mean marker spacing 4.4 cM), evidence for linkage to this region increased to a LOD score of 1.98. Conditional analyses revealed nominally significant interactions between this locus and the regions on chromosomes 10q23.3 (P=.01) and 5q32 (P=.02). These data, derived from one of the largest genome scans undertaken in this condition, confirm that individual susceptibility-gene effects for type 2 diabetes are likely to be modest in size. Taken with genome scans in other populations, they provide both replication of previous evidence indicating the presence of a diabetes-susceptibility locus on chromosome 1q24-25 and support for the existence of additional loci on chromosomes 5, 8, and 10. These data should accelerate positional cloning efforts in these regions of interest.  相似文献   

3.
4.
Genetic studies of plasma TG levels have identified associations with multiple candidate loci on chromosome11q23.3, which harbors a number of genes, including BUD13, ZNF259, and APOA5-A4-C3-A1. This study aimed to examine whether these multiple candidate genes on the 11q23.3 regions exert independent effects on TG levels or whether their effects are confounded by linkage disequilibrium (LD). We performed a genome-wide association study and consequent fine-mapping analyses on TG levels in two Korean population-based cohorts: the Korea Association Resource study (n = 8,223) and the Healthy Twin study (n = 1,735). A total of 301 loci reached genome-wide significance level in pooled analysis, including 10 SNPs with weak LD (r2 < 0.06) clustered on 11q23.3: ApoA5 (rs651821, rs2075291); ZNF259 (rs964184, rs603446); BUD13 (rs11216126); Apoa4 (rs7396851); SIK3 (rs12292858); PCSK7 (rs199890178); PAFAH1B2 (rs12420127), and SIDT2 (rs2269399). When the inter-dependence between alleles was examined using conditional models, five loci on BUD13, ZNF259, and ApoA5 showed possible independent associations. A haplotype analysis using five SNPs revealed both hyper- and hypotriglyceridemic haplotypes, which are relatively common in Koreans (haplotype frequency 0.08–0.22). Our findings suggest the presence of multiple functional loci on 11q23.3, which might exert their effects on plasma TG level independently or through complex interactions between functional loci.  相似文献   

5.
Frequent genetic aberrations of malignant schwannomas induced by the alkylating agent N-ethyl-N-nitrosourea in hybrids from inbred BD rat strains include allelic imbalances of the telomeric 20 Mb of chromosome 5 (Dis-2) and of the telomeric 5 Mb of chromosome 10q32 (Dis-1) in 59 and 94% of the tumors, respectively. The Dis-1 minimal loss of heterozygosity consensus region extends from D10Rat4 to the telomere and harbors a putative tumor suppressor gene(s). We constructed a 6-Mb BAC/PAC contig containing more than 70 known genes, 18 mapped microsatellites, and further ESTs/reference RNAs. A continuous block of strongly conserved synteny with mouse chromosome 11E2 and human chromosome 17q25.3 was found. Combining the sequence information from the rat and closely related syntenic regions of different mammalian species produces nearly complete gene maps as a basis for a positional candidate approach and gives insight into mammalian genomic evolution.  相似文献   

6.
Here, we present the results of two genome-wide scans in two diverse populations in which a consistent use of recently introduced migraine-phenotyping methods detects and replicates a locus on 10q22-q23, with an additional independent replication. No genetic variants have been convincingly established in migraine, and although several loci have been reported, none of them has been consistently replicated. We employed the three known migraine-phenotyping methods (clinical end diagnosis, latent-class analysis, and trait-component analysis) with robust multiple testing correction in a large sample set of 1675 individuals from 210 migraine families from Finland and Australia. Genome-wide multipoint linkage analysis that used the Kong and Cox exponential model in Finns detected a locus on 10q22-q23 with highly significant evidence of linkage (LOD 7.68 at 103 cM in female-specific analysis). The Australian sample showed a LOD score of 3.50 at the same locus (100 cM), as did the independent Finnish replication study (LOD score 2.41, at 102 cM). In addition, four previously reported loci on 8q21, 14q21, 18q12, and Xp21 were also replicated. A shared-segment analysis of 10q22-q23 linked Finnish families identified a 1.6-9.5 cM segment, centered on 101 cM, which shows in-family homology in 95% of affected Finns. This region was further studied with 1323 SNPs. Although no significant association was observed, four regions warranting follow-up studies were identified. These results support the use of symptomology-based phenotyping in migraine and suggest that the 10q22-q23 locus probably contains one or more migraine susceptibility variants.  相似文献   

7.
Amplification of 8q is frequently found in gastroesophageal junction (GEJ) cancer. It is usually detected in high-grade, high-stage GEJ adenocarcinomas. Moreover, it has been implicated in tumor progression in other cancer types. In this study, a detailed genomic analysis of 8q was performed on a series of GEJ adenocarcinomas, including 22 primary adenocarcinomas, 13 cell lines and two xenografts, by array comparative genomic hybridization (aCGH) with a whole chromosome 8q contig array. Of the 37 specimens, 21 originated from the esophagus and 16 were derived from the gastric cardia. Commonly overrepresented regions were identified at distal 8q, i.e. 124-125 Mb (8q24.13), at 127-128 Mb (8q24.21), and at 141-142 Mb (8q24.3). From these regions six genes were selected with putative relevance to cancer: ANXA13, MTSS1, FAM84B (alias NSE2), MYC, C8orf17 (alias MOST-1) and PTK2 (alias FAK). In addition, the gene EXT1 was selected since it was found in a specific amplification in cell line SK-GT-5. Quantitative RT-PCR analysis of these seven genes was subsequently performed on a panel of 24 gastroesophageal samples, including 13 cell lines, two xenografts and nine normal stomach controls. Significant overexpression was found for MYC and EXT1 in GEJ adenocarcinoma cell lines and xenografts compared to normal controls. Expression of the genes MTSS1, FAM84B and C8orf17 was found to be significantly decreased in this set of cell lines and xenografts. We conclude that, firstly, there are other genes than MYC involved in the 8q amplification in GEJ cancer. Secondly, the differential expression of these genes contributes to unravel the biology of GEJ adenocarcinomas.  相似文献   

8.
Autistic disorder is a complex genetic disease. Because of previous reports of individuals with autistic disorder with duplications of the Prader-Willi/Angelman syndrome critical region, we screened several markers across the 15q11-13 region, for linkage disequilibrium. One hundred forty families, consisting predominantly of a child with autistic disorder and both parents, were studied. Genotyping was performed by use of multiplex PCR and capillary electrophoresis. Two children were identified who had interstitial chromosome 15 duplications and were excluded from further linkage-disequilibrium analysis. Use of the multiallelic transmission-disequilibrium test (MTDT), for nine loci on 15q11-13, revealed linkage disequilibrium between autistic disorder and a marker in the gamma-aminobutyric acidA receptor subunit gene, GABRB3 155CA-2 (MTDT 28.63, 10 df, P=.0014). No evidence was found for parent-of-origin effects on allelic transmission. The convergence of GABRB3 as a positional and functional candidate along with the linkage-disequilibrium data suggests the need for further investigation of the role of GABRB3 or adjacent genes in autistic disorder.  相似文献   

9.
Age-related maculopathy (ARM), or age-related macular degeneration, is one of the most common causes of visual impairment in the elderly population of developed nations. In a combined analysis of two previous genomewide scans that included 391 families, containing up to 452 affected sib pairs, we found linkage evidence in four regions: 1q31, 9p13, 10q26, and 17q25. We now have added a third set of families and have performed an integrated analysis incorporating 530 families and up to 736 affected sib pairs. Under three diagnostic models, we have conducted linkage analyses using parametric (heterogeneity LOD [HLOD] scores under an autosomal dominant model) and nonparametric (Sall statistic) methods. There is ongoing evidence of susceptibility loci within the 1q31, 10q26, and 17q25 regions. If we treat the third set of families as a replication set, then two regions (10q26 and 17q25) are replicated, with LOD scores >1.0. If we pool all our data together, then four regions (1q31, 2q14.3, 10q26, and 17q25) show HLOD or Sall scores > or =2.0. Within the 1q31 region, we observed an HLOD of 2.72 (genomewide P=.061) under our least stringent diagnostic model, whereas the 17q25 region contained a maximal HLOD of 3.53 (genomewide P=.007) under our intermediate diagnostic model. We have evaluated our results with respect to the findings from several new independent genomewide linkage studies and also have completed ordered subset analyses (OSAs) with apolipoprotein E alleles, smoking history, and age at onset as stratifying covariates. The OSAs generate the interesting hypothesis that the effect of smoking on the risk of ARM is accentuated by a gene in the 10q26 region--a region implicated by four other studies.  相似文献   

10.
PHOSPHO1 is a recently identified phosphatase expressed at high levels in the chicken growth plate and which may be involved in generating inorganic phosphate for skeletal matrix mineralization. Using a degenerate RT-PCR approach a fragment of human PHOSPHO1 was cloned. This enabled the identification of the human orthologue on HSA17q21, and the mouse orthologue on a region of MMU11 that exhibits conservation of synteny with HSA17q21. Chicken PHOSPHO1 was mapped by SSCP analysis to position 44 cM on GGA27, adjacent to the HOXB@ (44 cM) and COL1A1 (36 cM) loci. Comparison of genes on GGA27 with their orthologues on the preliminary draft of the human genome identifies regions of conserved synteny equivalent to 25 Mb on HSA17q21.2-23.3 and approximately 20 Mb on GGA27 in which the gene order appears to be conserved. Mapping of the PHOSPHO1 genes to regions of HSA17q21.3, MMU11 and GGA27 that exhibit conservation of synteny provides strong evidence that they are orthologous.  相似文献   

11.
12.
Identification of genes causing variation in daytime and nighttime respiration rates could advance our understanding of the basic molecular processes of human respiratory rhythmogenesis. This could also serve an important clinical purpose, because dysfunction of such processes has been identified as critically important in sleep disorders. We performed a sib-pair-based linkage analysis on ambulatory respiration rate, using the data from 270 sibling pairs who were genotyped at 374 markers on the autosomes, with an average distance of 9.65 cM. Uni- and multivariate variance-components-based multipoint linkage analyses were performed for respiration rate during three daytime periods (morning, afternoon, and evening) and during nighttime sleep. Evidence of linkage was found at chromosomal locations 3q27, 7p22, 10q26, and 22q12. The strongest evidence of linkage was found for respiration rate during sleep, with LOD scores of 2.36 at 3q27, 3.86 at 10q26, and 1.59 at 22q12. In a simultaneous analysis of these three loci, >50% of the variance in sleep respiration rate could be attributed to a quantitative-trait loci near marker D10S1248 at 10q. Genes in this area (GFRA1, ADORA2L, FGR2, EMX2, and HMX2) can be considered promising positional candidates for genetic association studies of respiratory control during sleep.  相似文献   

13.
The MYC oncogene has been implicated in the regulation of up to thousands of genes involved in many cellular programs including proliferation, growth, differentiation, self-renewal, and apoptosis. MYC is thought to induce cancer through an exaggerated effect on these physiologic programs. Which of these genes are responsible for the ability of MYC to initiate and/or maintain tumorigenesis is not clear. Previously, we have shown that upon brief MYC inactivation, some tumors undergo sustained regression. Here we demonstrate that upon MYC inactivation there are global permanent changes in gene expression detected by microarray analysis. By applying StepMiner analysis, we identified genes whose expression most strongly correlated with the ability of MYC to induce a neoplastic state. Notably, genes were identified that exhibited permanent changes in mRNA expression upon MYC inactivation. Importantly, permanent changes in gene expression could be shown by chromatin immunoprecipitation (ChIP) to be associated with permanent changes in the ability of MYC to bind to the promoter regions. Our list of candidate genes associated with tumor maintenance was further refined by comparing our analysis with other published results to generate a gene signature associated with MYC-induced tumorigenesis in mice. To validate the role of gene signatures associated with MYC in human tumorigenesis, we examined the expression of human homologs in 273 published human lymphoma microarray datasets in Affymetrix U133A format. One large functional group of these genes included the ribosomal structural proteins. In addition, we identified a group of genes involved in a diverse array of cellular functions including: BZW2, H2AFY, SFRS3, NAP1L1, NOLA2, UBE2D2, CCNG1, LIFR, FABP3, and EDG1. Hence, through our analysis of gene expression in murine tumor models and human lymphomas, we have identified a novel gene signature correlated with the ability of MYC to maintain tumorigenesis.  相似文献   

14.
We have performed genetic linkage analysis in 13 large multiply affected families, to test the hypothesis that there is extensive heterogeneity of linkage for genetic subtypes of schizophrenia. Our strategy consisted of selecting 13 kindreds containing multiple affected cases in three or more generations, an absence of bipolar affective disorder, and a single progenitor source of schizophrenia with unilineal transmission into the branch of the kindred sampled. DNA samples from these families were genotyped with 365 microsatellite markers spaced at approximately 10-cM intervals across the whole genome. We observed LOD scores >3.0 at five distinct loci, either in the sample as a whole or within single families, strongly suggesting etiological heterogeneity. Heterogeneity LOD scores >3.0 in the sample as a whole were found at 1q33.2 (LOD score 3.2; P=.0003), 5q33.2 (LOD score 3.6; P=.0001), 8p22.1-22 (LOD score 3.6; P=.0001), and 11q21 (LOD score 3.1; P=.0004). LOD scores >3.0 within single pedigrees were found at 4q13-31 (LOD score 3.2; P=.0003) and at 11q23.3-24 (LOD score 3.2; P=.0003). A LOD score of 2.9 was also found at 20q12.1-11.23 within in a single family. The fact that other studies have also detected LOD scores >3.0 at 1q33.2, 5q33.2, 8p21-22 and 11q21 suggests that these regions do indeed harbor schizophrenia-susceptibility loci. We believe that the weight of evidence for linkage to the chromosome 1q22, 5q33.2, and 8p21-22 loci is now sufficient to justify intensive investigation of these regions by methods based on linkage disequilibrium. Such studies will soon allow the identification of mutations having a direct effect on susceptibility to schizophrenia.  相似文献   

15.
Cytogenetic analysis of a phenotypically normal young bull from Marchigiana breed revealed the presence of an abnormal karyotype. The observation of longer and smaller chromosomes than BTA1 and BTA29, respectively in all metaphases suggested the presence of a reciprocal translocation. RBG-banding confirmed this hypothesis revealing the involvement of BTA9 and BTA11. FISH analyses using cattle-specific BAC clones (474A12 and 293G09 for BTA9; 035D03 for BTA11) identified rcp(9;11)(q27;q11) in the two regions affected. Moreover analyses performed on both parents established the 'de novo' origin of the anomaly. Comparison with human homologue sequences (HSA6q24.3-->q25.3 for BTA9q27 and HSA2q11.1-->q12.1 for BTA11q11) revealed that both breakpoint regions are gene rich as up to date at least 200 genes have been localized in these regions. Thus, further analyses are required to identify the sequences disrupted by the breakpoints and to verify their consequences on rcp carrier phenotype.  相似文献   

16.
The autoimmune thyroid diseases (AITDs), comprising Graves disease (GD) and Hashimoto thyroiditis (HT), develop as a result of a complex interaction between predisposing genes and environmental triggers. Previously, we identified six loci that showed evidence for linkage with AITD in a data set of 56 multiplex families. The goals of the present study were to replicate/reject the previously identified loci before fine mapping and sequencing the candidate genes in these regions. We performed a whole-genome linkage study in an expanded data set of 102 multiplex families with AITD (540 individuals), through use of 400 microsatellite markers. Seven loci showed evidence for linkage to AITD. Three loci, on chromosomes 6p, 8q, and 10q, showed evidence for linkage with both GD and HT (maximum multipoint heterogeneity LOD scores [HLOD] 2.0, 3.5, and 4.1, respectively). Three loci showed evidence for linkage with GD: on 7q (HLOD 2.3), 14q (HLOD 2.1), and 20q (LOD 3.3, in a subset of the families). One locus on 12q showed evidence of linkage with HT, giving an HLOD of 3.4. Comparison with the results obtained in the original data set showed that the 20q (GD-2) and 12q (HT-2) loci continued to show evidence for linkage in the expanded data set; the 6p and 14q loci were located within the same region as the previously identified 6p and 14q loci (AITD-1 and GD-1, respectively), but the Xq (GD-3) and 13q (HT-1) loci were not replicated in the expanded data set. These results demonstrated that multiple genes may predispose to GD and HT and that some may be common to both diseases and some are unique. The loci that continue to show evidence for linkage in the expanded data set represent serious candidate regions for gene identification.  相似文献   

17.
The pericentric inv(10)(p11.2q21.2) mutation has been frequently identified in cytogenetic laboratories, is phenotypically silent, and is considered to be a polymorphic variant. Cloning and sequencing of the junction fragments on 10p11 and 10q21 revealed that neither inversion breakpoint directly involved any genes or repetitive sequences, although both breakpoint regions contain a number of repeats. All 20 apparently unrelated inv(10) families in our study had identical breakpoints, and detailed haplotype analysis showed that the inversions were identical by descent. Thus, although considered a common variant, inv(10)(p11.2q21.2) has a single ancestral founder among northern Europeans.  相似文献   

18.
19.
To identify the loci associated with progression of cervical carcinoma, chromosome 6 regions were tested for loss of heterozygosity. Detailed analysis with 28 microsatellite markers revealed a high frequency of allelic deletions for several loci of the short (6p25, 6p22, 6p21.3) and long (6q14, 6q16-21, 6q23-24, 6q25, 6q27) arms of chromosome 6. Examination of 37 microdissected carcinoma and 22 cervical dysplasia specimens revealed allelic deletions from the HLA class I-III genes (6p22-21.3) and subtelomeric locus 6p25 were found in more than 40% dysplasia specimens. With multiple microdissection of cryosections, genetic heterogeneity of squamous cervical carcinoma was analyzed, and clonal and subclonal allelic deletions from chromosome 6 were identified. Half of the tumors had clonal allelic deletion of D6S273 (6p21.3), which is in a Ly6G6D (MEGT1) intron in the HLA class III gene locus. The frequency of allelic deletions from the chromosome 6 long arm was no more than 20% in dysplasias. Allelic deletions from two loci, 6q14 and 6q16-21, were for the first time associated with invasion and metastasis in cervical carcinoma.  相似文献   

20.
Hereditary nonchromaffin paragangliomas (PGL; glomus tumors; MIM 168000) are mostly benign, slow-growing tumors of the head and neck region, inherited from carrier fathers in an autosomal dominant fashion subject to genomic imprinting. Genetic linkage analysis in two large, unrelated Dutch families assigned PGL loci to two regions of chromosome 11, at 11q23 (PGL1) and 11q13.1 (PGL2). We ascertained a total of 11 North American PGL families and confirmed maternal imprinting (inactivation). In three of six families, linkage analysis provided evidence of linkage to the PGL1 locus at 11q23. Recombinants narrowed the critical region to an approximately 4.5-Mb interval flanked by markers D11S1647 and D11S622. Partial allelic loss of strictly maternal origin was detected in 5 of 19 tumors. The greatest degree of imbalance was detected at 11q23, distal to D11S1327 and proximal to CD3D. Age at onset of symptoms was significantly different between fathers and children (Wilcoxon rank-sum test, P < .002). Affected children had an earlier age at onset of symptoms in 39 of 57 father-child pairs (chi2 = 7.74, P < .006). However, a more conservative comparison of the number of pairs in which a child had > or = 5 years earlier age at onset (n = 33) vis-a-vis that of complementary pairs (n = 24) revealed no significant difference (chi2 = 1.42, P > .2). Whether these data represent genetic anticipation or ascertainment bias can be addressed only by analysis of a larger number of father-child pairs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号