首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We investigated effects of paramyotonia congenita mutations F1473S and F1705I on gating of skeletal muscle Na+ channels. We used on-cell recordings from Xenopus oocytes to compare fast inactivation and deactivation in wild-type and mutant channels. Then, we used gating current recordings to determine how these actions of PC mutants might be reflected in their effects on charge movement and its immobilization. F1473S, but not F1705I, accelerated deactivation from the inactivated state and enhanced the remobilization of gating charge. F1473S and F1705I decreased the completion of closed-state fast inactivation, and decreased charge movement over the voltage range at which channels did not activate. An unexpected result was that F1705I increased the extent of charge immobilization in response to strong depolarization. Our results suggest that the DIV S4-S5 linker mutation F1473S promotes the hyperpolarized position of DIVS4 to accelerate recovery. Inhibition of charge movement by F1473S and F1705I in the absence of channel opening is discussed with respect to their effects on closed-state fast inactivation.  相似文献   

2.
The periodic paralyses are a group of autosomal dominant muscle diseases sharing a common feature of episodic paralysis. In one form, paramyotonia congenita (PC), the paralysis usually occurs with muscle cooling. Electrophysiologic studies of muscle from PC patients have revealed temperature-dependent alterations in sodium channel (NaCh) function. This observation led to demonstration of genetic linkage of a skeletal muscle NaCh gene to a PC disease allele. We now report the use of the single-strand conformation polymorphism technique to define alleles specific to PC patients from three families. Sequencing of these alleles defined base pair changes within the same codon, which resulted in two distinct amino acid substitutions for a highly conserved arginine residue in the S4 helix of domain 4 in the adult skeletal muscle NaCh. These data establish the chromosome 17q NaCh locus as the PC gene and represent two mutations causing the distinctive, temperature-sensitive PC phenotype.  相似文献   

3.
Mutations in the gene encoding the voltage-gated sodium channel of skeletal muscle (SkMl) have been identified in a group of autosomal dominant diseases, characterized by abnormalities of the sarcolemmal excitability, that include paramyotonia congenita (PC) and hyperkalemic periodic paralysis (HYPP). We previously reported that PC mutations cause in common a slowing of inactivation in the human SkMl sodium channel. In this investigation, we examined the molecular mechanisms responsible for the effects of L1433R, located in D4/S3, on channel gating by creating a series of additional mutations at the 1433 site. Unlike the R1448C mutation, found in D4/S4, which produces its effects largely due to the loss of the positive charge, change of the hydropathy of the side chain rather than charge is the primary factor mediating the effects of L1433R. These two mutations also differ in their effects on recovery from inactivation, conditioned inactivation, and steady state inactivation of the hSkMl channels. We constructed a double mutation containing both L1433R and R1448C. The double mutation closely resembled R1448C with respect to alterations in the kinetics of inactivation during depolarization and voltage dependence, but was indistinguishable from L1433R in the kinetics of recovery from inactivation and steady state inactivation. No additive effects were seen, suggesting that these two segments interact during gating. In addition, we found that these mutations have different effects on the delay of recovery from inactivation and the kinetics of the tail currents, raising a question whether this delay is a reflection of the deactivation process. These results suggest that the S3 and S4 segments play distinct roles in different processes of hSkM1 channel gating: D4/S4 is critical for the deactivation and inactivation of the open channel while D4/S3 has a dominant role in the recovery of inactivated channels. However, these two segments interact during the entry to, and exit from, inactivation states.  相似文献   

4.
Paramyotonia congenita (PMC), a dominant disorder featuring cold-induced myotonia (muscle stiffness), has recently been genetically linked to a candidate gene, the skeletal muscle sodium channel gene SCN4A. We have now established that SCN4A is the disease gene in PMC by identifying two different single-base coding sequence alterations in PMC families. Both mutations affect highly conserved residues in the III-IV cytoplasmic loop, a portion of the sodium channel thought to pivot in response to membrane depolarization, thereby blocking and inactivating the channel. Abnormal function of this cytoplasmic loop therefore appears to produce the Na+ current abnormality and the unique temperature-sensitive clinical phenotype in this disorder.  相似文献   

5.
The antianginal drug ranolazine exerts voltage- and use-dependent block (UDB) of several Na+ channel isoforms, including Nav1.4. We hypothesized that ranolazine will similarly inhibit the paramyotonia congenita Nav1.4 gain-of-function mutations, R1448C, R1448H, and R1448P that are associated with repetitive action potential firing. Whole-cell Na+ current (INa) was recorded from HEK293 cells expressing the hNav1.4 WT or R1448 mutations. At a holding potential (HP) of -140 mV, ranolazine exerted UDB (10 Hz) of WT and R1448 mutations (IC50 = 59 - 71 µM). The potency for ranolazine UDB increased when the frequency of stimulation was raised to 30 Hz (IC50 = 20 - 27 uM). When the HP was changed to -70 mV to mimic the resting potential of an injured skeletal muscle fibre, the potency of ranolazine to block INa further increased; values of ranolazine IC50 for block of WT, R1448C, R1448H, and R1448P were 3.8, 0.9, 6.3, and 0.9 uM, respectively. Ranolazine (30 uM) also caused a hyperpolarizing shift in the voltage-dependence of inactivation of WT and R1448 mutations. The effects of ranolazine (30 uM) to reduce INa were similar (~35% INa inhibition) when different conditioning pulse durations (2-20 msec) were used. Ranolazine (10 µM) suppressed the abnormal INa induced by slow voltage ramps for R1448C channels. In computer simulations, 3 µM ranolazine inhibited the sustained and excessive firing of skeletal muscle action potentials that are characteristic of myotonia. Taken together, the data indicate that ranolazine interacts with the open state and stabilizes the inactivated state(s) of Nav1.4 channels, causes voltage- and use-dependent block of INa and suppresses persistent INa. These data further suggest that ranolazine might be useful to reduce the sustained action potential firing seen in paramyotonia congenita.  相似文献   

6.
The antianginal drug ranolazine exerts voltage- and use-dependent block (UDB) of several Na+ channel isoforms, including Na(v) 1.4. We hypothesized that ranolazine will similarly inhibit the paramyotonia congenita Na(v) 1.4 gain-of-function mutations, R1448C, R1448H, and R1448P that are associated with repetitive action potential firing. Whole-cell Na+ current (I(Na)) was recorded from HEK293 cells expressing the hNa(v) 1.4 WT or R1448 mutations. At a holding potential (HP) of -140 mV, ranolazine exerted UDB (10 Hz) of WT and R1448 mutations (IC 50 = 59 - 71 μM). The potency for ranolazine UDB increased when the frequency of stimulation was raised to 30 Hz (IC 50 = 20 - 27 uM). When the HP was changed to -70 mV to mimic the resting potential of an injured skeletal muscle fibre, the potency of ranolazine to block I(Na) further increased; values of ranolazine IC 50 for block of WT, R1448C, R1448H, and R1448P were 3.8, 0.9, 6.3, and 0.9 uM, respectively. Ranolazine (30 uM) also caused a hyperpolarizing shift in the voltage-dependence of inactivation of WT and R1448 mutations. The effects of ranolazine (30 uM) to reduce I(Na) were similar (~35% I(Na) inhibition) when different conditioning pulse durations (2-20 msec) were used. Ranolazine (10 μM) suppressed the abnormal I(Na) induced by slow voltage ramps for R1448C channels. In computer simulations, 3 μM ranolazine inhibited the sustained and excessive firing of skeletal muscle action potentials that are characteristic of myotonia. Taken together, the data indicate that ranolazine interacts with the open state and stabilizes the inactivated state(s) of Na(v)1.4 channels, causes voltage- and use-dependent block of I(Na) and suppresses persistent I(Na). These data further suggest that ranolazine might be useful to reduce the sustained action potential firing seen in paramyotonia congenita.  相似文献   

7.
Voltage-gated sodium channels (Nav) are complex glycoproteins comprised of an alpha subunit and often one to several beta subunits. We have shown that sialic acid residues linked to Nav alpha and beta1 subunits alter channel gating. To determine whether beta2-linked sialic acids similarly impact Nav gating, we co-expressed beta2 with Nav1.5 or Nav1.2 in Pro5 (complete sialylation) and in Lec2 (essentially no sialylation) cells. Beta2 sialic acids caused a significant hyperpolarizing shift in Nav1.5 voltage-dependent gating, thus describing for the first time an effect of beta2 on Nav1.5 gating. In contrast, beta2 caused a sialic acid-independent depolarizing shift in Nav1.2 gating. A deglycosylated mutant, beta(2-DeltaN), had no effect on Nav1.5 gating, indicating further the impact of beta2 N-linked sialic acids on Nav1.5 gating. Conversely, beta(2-DeltaN) modulated Nav1.2 gating virtually identically to beta2, confirming that beta2 N-linked sugars have no impact on Nav1.2 gating. Thus, beta2 modulates Nav gating through multiple mechanisms possibly determined by the associated alpha subunit. Beta1 and beta2 were expressed together with Nav1.5 or Nav1.2 in Pro5 and Lec2 cells. Together beta1 and beta2 produced a significantly larger sialic acid-dependent hyperpolarizing shift in Nav1.5 gating. Under fully sialylating conditions, the Nav1.2.beta1.beta2 complex behaved like Nav1.2 alone. When sialylation was reduced, only the sialic acid-independent depolarizing effects of beta2 on Nav1.2 gating were apparent. Thus, the varied effects of beta1 and beta2 on Nav1.5 and Nav1.2 gating are apparently synergistic and highlight the complex manner, through subunit- and sugar-dependent mechanisms, by which Nav activity is modulated.  相似文献   

8.
A stochastic model of the sodium channel is proposed. Transitions from the resting to the open state of the channel is described by the gamma distribution. The open state is temporary with an average open time T, and the channel proceeds to the inactivated state. The channel can be represented by two identical control molecules which undergo conformation transitions under changes of the electrical field. The gating of the channel is analyzed and its relation to the gating current is proposed. The movements of the control molecules are not identical with the charge movements. Charged parts of control molecules move in the electrical field of the membrane and make their conformation energetically possible. The model is represented by a set of differential equations, and explicit solutions for long depolarizing voltage steps are found. Parameters are determined to fit literary experimental data.  相似文献   

9.
Most current models of membrane ion channel gating are abstract compartmental models consisting of many undefined states connected by rate constants arbitrarily assigned to fit the known kinetics. In this paper is described a model with states that are defined in terms of physically plausible real systems which is capable of describing accurately most of the static and dynamic properties measured for the sodium channel of the squid axon. The model has two components. The Q-system consists of charges and dipoles that can move in response to an electric field applied across the membrane. It would contain and may compose the gating charge that is known to transfer prior to channel opening. The N-system consists of a charged group or dipole that is constrained to move only in the plane of the membrane and thus does not interact directly with the trans-membrane electric field but can interact electrostatically with the Q-system. The N-system has only two states, its resting state (channel closed) and its excited state (channel open) and its response time is very short in comparison with that of the Q-system. On depolarizing the membrane the the N-system will not make a transition to its open state until a critical amount of Q-charge transfer has occurred. Using only four adjustable parameters that are fully determined by fitting the equilibrium properties of the model to those of the sodium channel in the squid axon, the model is then able to describe with some accuracy the kinetics of channel opening and closing and includes the Cole and Moore delay. In addition to these predictions of the behaviour of assemblies of channels the model predicts some of the individual channel properties measured by patch clamp techniques.  相似文献   

10.
The effects of extracellular saxitoxin (STX) and tetrodotoxin (TTX) on gating current (IgON) were studied in voltage clamped crayfish giant axons. At a holding potential (VH) of -90 mV, integrated gating charge (QON) was found to be 56% suppressed when 200 nM STX was added to the external solution, and 75% suppressed following the addition of 200 nM TTX. These concentrations of toxin are sufficiently high to block greater than 99% of sodium channels. A smaller suppression of IgON was observed when 1 nM STX was used (KD = 1-2 nM STX). The suppression of IgON by external toxin was found to be hold potential dependent, with only minimal suppression observed at the most hyperpolarized hold potentials, -140 to -120 mV. The maximal effect of these toxins on IgON was observed at hold potentials where the QON vs. VH plot was found to be steepest, -100 to -80 mV. The suppression of IgON induced by TTX is partially relieved following the removal of fast inactivation by intracellular treatment with N-bromoacetamide (NBA). The effect of STX and TTX on IgON is equivalent to a hyperpolarizing shift in the steady state inactivation curve, with 200 nM STX and 200 nM TTX inducing shifts of 4.9 +/- 1.7 mV and 10.0 +/- 2.1 mV, respectively. Our results are consistent with a model where the binding of toxin displaces a divalent cation from a negatively charged site near the external opening of the sodium channel, thereby producing a voltage offset sensed by the channel gating apparatus.  相似文献   

11.
Metal ions affect ion channels either by blocking the current or by modifying the gating. In the present review we analyse the effects on the gating of voltage-gated channels. We show that the effects can be understood in terms of three main mechanisms. Mechanism A assumes screening of fixed surface charges. Mechanism B assumes binding to fixed charges and an associated electrostatic modification of the voltage sensor. Mechanism C assumes binding and an associated non electrostatic modification of the gating. To quantify the non-electrostatic effect we introduced a slowing factor, A. A fourth mechanism (D) is binding to the pore with a consequent pore block, and could be a special case of Mechanisms B or C. A further classification considers whether the metal ion affects a single site or multiple sites. Analysing the properties of these mechanisms and the vast number of studies of metal ion effects on different voltage-gated on channels we conclude that group 2 ions mainly affect channels by classical screening (a version of Mechanism A). The transition metals and the Zn group ions mainly bind to the channel and electrostatically modify the gating (Mechanism B), causing larger shifts of the steady-state parameters than the group 2 ions, but also different shifts of activation and deactivation curves. The lanthanides mainly bind to the channel and both electrostatically and non-electrostatically modify the gating (Mechanisms B and C). With the exception of the ether-à-go-go-like channels, most channel types show remarkably similar ion-specific sensitivities.  相似文献   

12.
Using a very low noise voltage clamp technique it has been possible to record from the squid giant axon a slow component of gating current (I g ) during the inactivation phase of the macroscopic sodium current (I Na ) which was hitherto buried in the baseline noise. In order to examine whether this slowI g contains gating charge that originates from transitions between the open (O) and the inactivated (I) states, which would indicate a true voltage dependence of inactivation, or whether other transitions contribute charge to slowI g , a new model independent analysis termed isochronic plot analysis has been developed. From a direct correlation ofI g and the time derivative of the sodium conductance dg Na/d the condition when only O-I transitions occur is detected. Then the ratio of the two signals is constant and a straight line appears in an isochronic plot ofI g vs. dg Na/d . Its slope does not depend on voltage or time and corresponds to the quantal gating charge of the O-I transition (q h ) divided by the single channel ionic conductance (). This condition was found at voltages above – 10 mV up to + 40 mV and a figure of 1.21e was obtained forq h at temperatures of 5 and 15°C. At lower voltages additional charge from other transitions, e.g. closed to open, is displaced during macroscopic inactivation. This means that conventional Eyring rate analysis of the inactivation time constant h is only valid above – 10 mV and here the figure forq h was confirmed also from this analysis. It is further shown that most of the present controversies surrounding the voltage dependence of inactivation can be clarified. The validity of the isochronic plot analysis has been confirmed using simulated gating and ionic currents.Abbreviations I g gating current - I Na sodium ionic current - g Na macroscopic sodium conductance - single channel conductance - C, O, I closed, open, inactivated state occupancy of channels - g h quantal charge displaced in a single O-I transition of Na channel - e equivalent electron charge - h index referring to inactivation process - S l limiting slope in isochronic plot see Eq.(3) - fractional distance, see Fig. 4 and (4, 5) - TMA tetramethylammonium - TTX tetrodotoxin - Tris tris(hydroxymethyl)aminomethane - HEPES N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid  相似文献   

13.
1. Two mutants of the sodium channel II have been expressed inXenopus oocytes and have been investigated using the patch-clamp technique. In mutant E387Q the glutamic acid at position 387 has been replaced by glutamine, and in mutant D384N the aspartic acid at position 384 has been replaced by asparagine.2. Mutant E387Q, previously shown to be resistant to block by tetrodotoxin (Noda et al. 1989), has a single-channel conductance of 4 pS, that can be easily measured only using noise analysis. At variance with the wild-type, the openchannel current-voltage relationship of mutant E387Q is linear over a wide voltage range even under asymmetrical ionic conditions.3. Mutant D384N has a very low permeability for any of the following ions: Cl, Na+, K+, Li+, Rb+, Ca2+, Mg2+, NH4 + , TMA+, TEA+. However, asymmetric charge movements similar to the gating currents of the Na+-selective wild-type are still observed.4. These results suggest that residues E387 and D384 interact directly with the pathway of the ions permeating the open channel.Abbreviations TTX tetrodotoxin; Na+, sodium; K+, potassium; - NFR normal frog Ringer - HEPES N-2-hydroxylethyl piperazine-N-2-ethanesulfonic acid - EGTA ethyleneglycol-bis(-amino-ethyl ether) N,N,N',N'-tetra acetic acid - TEA tetraethylammonium - TMA tetramethylammonium;I g , gating current; , single-channel conductance  相似文献   

14.
ISK is a small membrane protein consisting of 129-130 amino acid residues with a single putative transmembrane domain and induces a very slow voltage-dependent K+ channel activity in the Xenopus oocyte expression system. We investigated the nature and structure-function relation of ISK by examining the effects of various mutations of ISK on the K+ channel activities measured in Xenopus oocytes. Deletion and truncation of the ISK protein indicated that the 63-amino acid sequence covering a transmembrane domain is sufficient for eliciting a K+ channel activity characteristic of ISK. Amino acid substitutions at a total of 31 positions within and surrounding the transmembrane domain caused different effects on the channel activity. A channel activity was enhanced by substitution of leucine with isoleucine at position 52 within the transmembrane domain, and the kinetic analysis of this mutation indicated that the enhancement of the channel activity is due to an alteration of a gating property of the ISK protein and thus supported the view that ISK forms an integral part of the K+ channel itself. The substitutions at many positions of the membrane-following region produced drastic reduction of the channel activity, and this is in marked contrast to the lack of effects of amino acid substitutions at the membrane-preceding region. Thus, the cytoplasmic portion immediately following the transmembrane domain plays a crucial role in inducing the channel activity of ISK.  相似文献   

15.
Voltage-gated sodium channels mediate the initiation and propagation of action potentials in excitable cells. Transmembrane segment S4 of voltage-gated sodium channels resides in a gating pore where it senses the membrane potential and controls channel gating. Substitution of individual S4 arginine gating charges (R1–R3) with smaller amino acids allows ionic currents to flow through the mutant gating pore, and these gating pore currents are pathogenic in some skeletal muscle periodic paralysis syndromes. The voltage dependence of gating pore currents provides information about the transmembrane position of the gating charges as S4 moves in response to membrane potential. Here we studied gating pore current in mutants of the homotetrameric bacterial sodium channel NaChBac in which individual arginine gating charges were replaced by cysteine. Gating pore current was observed for each mutant channel, but with different voltage-dependent properties. Mutating the first (R1C) or second (R2C) arginine to cysteine resulted in gating pore current at hyperpolarized membrane potentials, where the channels are in resting states, but not at depolarized potentials, where the channels are activated. Conversely, the R3C gating pore is closed at hyperpolarized membrane potentials and opens with channel activation. Negative conditioning pulses revealed time-dependent deactivation of the R3C gating pore at the most hyperpolarized potentials. Our results show sequential voltage dependence of activation of gating pore current from R1 to R3 and support stepwise outward movement of the substituted cysteines through the narrow portion of the gating pore that is sealed by the arginine side chains in the wild-type channel. This pattern of voltage dependence of gating pore current is consistent with a sliding movement of the S4 helix through the gating pore. Through comparison with high-resolution models of the voltage sensor of bacterial sodium channels, these results shed light on the structural basis for pathogenic gating pore currents in periodic paralysis syndromes.  相似文献   

16.
Two point mutations (F1845Y and V1848I) in the voltage-gated sodium channel gene of Plutella xylostella are involved in the target-site resistance to sodium channel blocker insecticides (SCBIs). The contribution of the individual mutations to the SCBI resistance and the associated inheritance modes is as yet unclear. Through 2 rounds of single-pair crossing and marker-assisted selection, 2 P. xylostella strains (1845Y and 1848I) bearing homozygous F1845Y or V1848I mutant alleles were successfully established from a field-collected population, and the contribution of each mutation to SCBI resistance, as well as associated inheritance patterns, was determined. When compared with the susceptible SZPS strain, each of the mutations individually conferred equally high-level resistance to indoxacarb (378 and 313 fold) and metaflumizone (734 and 674 fold), respectively. However, dominance levels of resistance to SCBIs were significantly different between the 2 resistant strains. Resistance of the 1845Y strain to indoxacarb and metaflumizone was inherited as an autosomal and incompletely dominant trait (D values ranged from 0.43 to 0.76). In contrast, that of the 1848I strain followed an autosomal but incompletely recessive to semidominant mode (D values: −0.24 to 0.09). Our findings enriched the current understanding of inheritance and mechanisms of SCBI resistance in P. xylostella, and will help develop resistance management programs for P. xylostella and other economic pests.  相似文献   

17.
18.
19.
《Cell》2021,184(20):5151-5162.e11
  1. Download : Download high-res image (216KB)
  2. Download : Download full-size image
  相似文献   

20.
Sodium channel gating behavior was modeled with Markovian models fitted to currents from the cut-open squid giant axon in the absence of divalent cations. Optimum models were selected with maximum likelihood criteria using single-channel data, then models were refined and extended by simultaneous fitting of macroscopic ionic currents, ON and OFF gating currents, and single-channel first latency densities over a wide voltage range. Best models have five closed states before channel opening, with inactivation from at least one closed state as well as the open state. Forward activation rate constants increase with depolarization, and deactivation rate constants increase with hyperpolarization. Rates of inactivation from the open or closed states are generally slower than activation or deactivation rates and show little or no voltage dependence. Channels tend to reopen several times before inactivating. Macroscopic rates of activation and inactivation result from a combination of closed, open and inactivated state transitions. At negative potentials the time to first opening dominates the macroscopic current due to slow activation rates compared with deactivation rates: channels tend to reopen rarely, and often inactivate from closed states before they reopen. At more positive potentials, the time to first opening and burst duration together produce the macroscopic current.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号