首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Recently, using a co-culture system, we demonstrated that MCF7 epithelial cancer cells induce oxidative stress in adjacent cancer-associated fibroblasts, resulting in the autophagic/lysosomal degradation of stromal caveolin-1 (Cav-1). However, the detailed signaling mechanism(s) underlying this process remain largely unknown. Here, we show that hypoxia is sufficient to induce the autophagic degradation of Cav-1 in stromal fibroblasts, which is blocked by the lysosomal inhibitor chloroquine. Concomitant with the hypoxia-induced degradation of Cav-1, we see the upregulation of a number of well-established autophagy/mitophagy markers, namely LC3, ATG16L, BNIP3, BNIP3L, HIF-1α and NFκB. In addition, pharmacological activation of HIF-1α drives Cav-1 degradation, while pharmacological inactivation of HIF-1 prevents the downregulation of Cav-1. Similarly, pharmacological inactivation of NFκB—another inducer of autophagy—prevents Cav-1 degradation. Moreover, treatment with an inhibitor of glutathione synthase, namely BSO, which induces oxidative stress via depletion of the reduced glutathione pool, is sufficient to induce the autophagic degradation of Cav-1. Thus, it appears that oxidative stress mediated induction of HIF1- and NFκB-activation in fibroblasts drives the autophagic degradation of Cav-1. In direct support of this hypothesis, we show that MCF7 cancer cells activate HIF-1α- and NFκB-driven luciferase reporters in adjacent cancer-associated fibroblasts, via a paracrine mechanism. Consistent with these findings, acute knockdown of Cav-1 in stromal fibroblasts, using an siRNA approach, is indeed sufficient to induce autophagy, with the upregulation of both lysosomal and mitophagy markers. How does the loss of stromal Cav-1 and the induction of stromal autophagy affect cancer cell survival? Interestingly, we show that a loss of Cav-1 in stromal fibroblasts protects adjacent cancer cells against apoptotic cell death. Thus, autophagic cancer-associated fibroblasts, in addition to providing recycled nutrients for cancer cell metabolism, also play a protective role in preventing the death of adjacent epithelial cancer cells. We demonstrate that cancer-associated fibroblasts upregulate the expression of TIGAR in adjacent epithelial cancer cells, thereby conferring resistance to apoptosis and autophagy. Finally, the mammary fat pads derived from Cav-1 (−/−) null mice show a hypoxia-like response in vivo, with the upregulation of autophagy markers, such as LC3 and BNIP3L. Taken together, our results provide direct support for the “autophagic tumor stroma model of cancer metabolism”, and explain the exceptional prognostic value of a loss of stromal Cav-1 in cancer patients. Thus, a loss of stromal fibroblast Cav-1 is a biomarker for chronic hypoxia, oxidative stress and autophagy in the tumor microenvironment, consistent with its ability to predict early tumor recurrence, lymph node metastasis and tamoxifen-resistance in human breast cancers. Our results imply that cancer patients lacking stromal Cav-1 should benefit from HIF-inhibitors, NFκB-inhibitors, anti-oxidant therapies, as well as autophagy/lysosomal inhibitors. These complementary targeted therapies could be administered either individually or in combination, to prevent the onset of autophagy in the tumor stromal compartment, which results in a “lethal” tumor microenvironment.Key words: caveolin-1, autophagy, BNIP3, cancer-associated fibroblasts, HIF1, hypoxia, LC3, mitophagy, NFκB, oxidative stress, predictive biomarker, TIGAR, tumor stroma  相似文献   

2.
Recently, we proposed a new paradigm for understanding the role of the tumor microenvironment in breast cancer onset and progression. In this model, cancer cells induce oxidative stress in adjacent fibroblasts. This, in turn, results in the onset of stromal autophagy, which produces recycled nutrients to “feed” anabolic cancer cells. However, it remains unknown how autophagy in the tumor microenvironment relates to inflammation, another key driver of tumorigenesis. To address this issue, here we employed a well-characterized co-culture system in which cancer cells induce autophagy in adjacent fibroblasts via oxidative stress and NFκB-activation. We show, using this co-culture system, that the same experimental conditions that result in an autophagic microenvironment, also drive in the production of numerous inflammatory mediators (including IL-6, IL-8, IL-10, MIP1a, IFNg, RANTES (CCL5) and GMCSF). Furthermore, we demonstrate that most of these inflammatory mediators are individually sufficient to directly induce the onset of autophagy in fibroblasts. To further validate the in vivo relevance of these findings, we assessed the inflammatory status of Cav-1 (-/-) null mammary fat pads, which are a model of a bonafide autophagic microenvironment. Notably, we show that Cav-1 (-/-) mammary fat pads undergo infiltration with numerous inflammatory cell types, including lymphocytes, T-cells, macrophages and mast cells. Taken together, our results suggest that cytokine production and inflammation are key drivers of autophagy in the tumor microenvironment. These results may explain why a loss of stromal Cav-1 is a powerful predictor of poor clinical outcome in breast cancer patients, as it is a marker of both (1) autophagy and (2) inflammation in the tumor microenvironment. Lastly, hypoxia in fibroblasts was not sufficient to induce the full-blown inflammatory response that we observed during the co-culture of fibroblasts with cancer cells, indicating that key reciprocal interactions between cancer cells and fibroblasts may be required.  相似文献   

3.
Loss of stromal fibroblast caveolin-1 (Cav-1) is a powerful single independent predictor of poor prognosis in human breast cancer patients, and is associated with early tumor recurrence, lymph node metastasis, and tamoxifen-resistance. We developed a novel co-culture system to understand the mechanism(s) by which a loss of stromal fibroblast Cav-1 induces a "lethal tumor micro-environment". Here, we propose a new paradigm to explain the powerful prognostic value of stromal Cav-1. In this model, cancer cells induce oxidative stress in cancer associated fibroblasts, which then acts as a "metabolic" and "mutagenic" motor to drive tumor-stroma co-evolution, DNA damage, and aneuploidy in cancer cells. More specifically, we show that an acute loss of Cav-1 expression leads to mitochondrial dysfunction, oxidative stress, and aerobic glycolysis in cancer associated fibroblasts. Also, we propose that defective mitochondria are removed from cancer-associated fibroblasts by autophagy/mitophagy that is induced by oxidative stress. As a consequence, cancer associated fibroblasts provide nutrients (such as lactate) to stimulate mitochondrial biogenesis and oxidative metabolism in adjacent cancer cells (the "Reverse Warburg Effect"). We provide evidence that oxidative stress in cancer associated fibroblasts is sufficient to induce genomic instability in adjacent cancer cells, via a bystander effect, potentially increasing their aggressive behavior. Finally, we directly demonstrate that nitric oxide (NO) over-production, secondary to Cav-1 loss, is the root cause for mitochondrial dysfunction in cancer associated fibroblasts. In support of this notion, treatment with anti-oxidants (such as N-acetyl-cysteine, metformin, and quercetin), or NO inhibitors (L-NAME) was sufficient to reverse many of the cancer-associated fibroblast phenotypes that we describe. Thus, cancer cells use "oxidative stress" in adjacent fibroblasts i) as an "engine" to fuel their own survival via the stromal production of nutrients, and ii) to drive their own mutagenic evolution towards a more aggressive phenotype, by promoting genomic instability. We also present evidence that the "field effect" in cancer biology could also be related to the stromal production of ROS and NO species. eNOS-expressing fibroblasts have the ability to down-regulate Cav-1 and induce mitochondrial dysfunction in adjacent fibroblasts that do not express eNOS. As such, the effects of stromal oxidative stress can be laterally propagated, amplified, and are effectively "contagious"-spread from cell-to-cell like a virus-creating an "oncogenic/mutagenic" field promoting widespread DNA damage.  相似文献   

4.
Mutations in the BRCA1 tumor suppressor gene are commonly found in hereditary ovarian cancers. Here, we used a co-culture approach to study the metabolic effects of BRCA1-null ovarian cancer cells on adjacent tumor-associated stromal fibroblasts. Our results directly show that BRCA1-null ovarian cancer cells produce large amounts of hydrogen peroxide, which can be abolished either by administration of simple antioxidants (N-acetyl-cysteine; NAC) or by replacement of the BRCA1 gene. Thus, the BRCA1 gene normally suppresses tumor growth by functioning as an antioxidant. Importantly, hydrogen peroxide produced by BRCA1-null ovarian cancer cells induces oxidative stress and catabolic processes in adjacent stromal fibroblasts, such as autophagy, mitophagy and glycolysis, via stromal NFκB activation. Catabolism in stromal fibroblasts was also accompanied by the upregulation of MCT4 and a loss of Cav-1 expression, which are established markers of a lethal tumor microenvironment. In summary, loss of the BRCA1 tumor suppressor gene induces hydrogen peroxide production, which then leads to metabolic reprogramming of the tumor stroma, driving stromal-epithelial metabolic coupling. Our results suggest that new cancer prevention trials with antioxidants are clearly warranted in patients that harbor hereditary/familial BRCA1 mutations.  相似文献   

5.
Loss of stromal fibroblast caveolin-1 (Cav-1) is a powerful single independent predictor of poor prognosis in human breast cancer patients, and is associated with early tumor recurrence, lymph node metastasis and tamoxifen-resistance. We developed a novel co-culture system to understand the mechanism(s) by which a loss of stromal fibroblast Cav-1 induces a “lethal tumor microenvironment.” Here, we propose a new paradigm to explain the powerful prognostic value of stromal Cav-1. In this model, cancer cells induce oxidative stress in cancer-associated fibroblasts, which then acts as a “metabolic” and “mutagenic” motor to drive tumor-stroma co-evolution, DNA damage and aneuploidy in cancer cells. More specifically, we show that an acute loss of Cav-1 expression leads to mitochondrial dysfunction, oxidative stress and aerobic glycolysis in cancer associated fibroblasts. Also, we propose that defective mitochondria are removed from cancer-associated fibroblasts by autophagy/mitophagy that is induced by oxidative stress. As a consequence, cancer associated fibroblasts provide nutrients (such as lactate) to stimulate mitochondrial biogenesis and oxidative metabolism in adjacent cancer cells (the “Reverse Warburg effect”). We provide evidence that oxidative stress in cancer-associated fibroblasts is sufficient to induce genomic instability in adjacent cancer cells, via a bystander effect, potentially increasing their aggressive behavior. Finally, we directly demonstrate that nitric oxide (NO) over-production, secondary to Cav-1 loss, is the root cause for mitochondrial dysfunction in cancer associated fibroblasts. In support of this notion, treatment with anti-oxidants (such as N-acetyl-cysteine, metformin and quercetin) or NO inhibitors (L-NAME) was sufficient to reverse many of the cancer-associated fibroblast phenotypes that we describe. Thus, cancer cells use “oxidative stress” in adjacent fibroblasts (1) as an “engine” to fuel their own survival via the stromal production of nutrients and (ii) to drive their own mutagenic evolution towards a more aggressive phenotype, by promoting genomic instability. We also present evidence that the “field effect” in cancer biology could also be related to the stromal production of ROS and NO species. eNOS-expressing fibroblasts have the ability to downregulate Cav-1 and induce mitochondrial dysfunction in adjacent fibroblasts that do not express eNOS. As such, the effects of stromal oxidative stress can be laterally propagated, amplified and are effectively “contagious”—spread from cell-to-cell like a virus—creating an “oncogenic/mutagenic” field promoting widespread DNA damage.Key words: caveolin-1, cancer associated fibroblasts, oxidative stress, reactive oxygen species (ROS), mitochondrial dysfunction, autophagy, nitric oxide (NO), DNA damage, aneuploidy, genomic instability, anti-oxidant cancer therapy, the “field effect” in cancer biology  相似文献   

6.
Our recent studies have mechanistically implicated a loss of stromal Cav-1 expression and HIF1-alpha-activation in driving the cancer-associated fibroblast phenotype, through the paracrine production of nutrients via autophagy and aerobic glycolysis. However, it remains unknown if HIF1a-activation is sufficient to confer the cancer-associated fibroblast phenotype. To test this hypothesis directly, we stably-expressed activated HIF1a in fibroblasts and then examined their ability to promote tumor growth using a xenograft model employing human breast cancer cells (MDA-MB-231). Fibroblasts harboring activated HIF1a showed a dramatic reduction in Cav-1 levels and a shift towards aerobic glycolysis, as evidenced by a loss of mitochondrial activity, and an increase in lactate production. Activated HIF1a also induced BNIP3 and BNIP3L expression, markers for the autophagic destruction of mitochondria. Most importantly, fibroblasts expressing activated HIF1a increased tumor mass by ~2-fold and tumor volume by ~3-fold, without a significant increase in tumor angiogenesis. In this context, HIF1a also induced an increase in the lymph node metastasis of cancer cells. Similar results were obtained by driving NFκB activation in fibroblasts, another inducer of autophagy. Thus, activated HIF1a is sufficient to functionally confer the cancer-associated fibroblast phenotype. It is also known that HIF1a expression is required for the induction of autophagy in cancer cells. As such, we next directly expressed activated HIF1a in MDA-MB-231 cells and assessed its effect on tumor growth via xenograft analysis. Surprisingly, activated HIF1a in cancer cells dramatically suppressed tumor growth, resulting in a 2-fold reduction in tumor mass and a 3-fold reduction in tumor volume. We conclude that HIF1a activation in different cell types can either promote or repress tumorigenesis. Based on these studies, we suggest that autophagy in cancer-associated fibroblasts promotes tumor growth via the paracrine production of recycled nutrients, which can directly "feed" cancer cells. Conversely, autophagy in cancer cells represses tumor growth via their "self-digestion." Thus, we should consider that the activities of various known oncogenes and tumor-suppressors may be compartment and cell-type specific, and are not necessarily an intrinsic property of the molecule itself. As such, other "classic" oncogenes and tumor suppressors will have to be re-evaluated to determine their compartment specific effects on tumor growth and metastasis. Lastly, our results provide direct experimental support for the recently proposed "Autophagic Tumor Stroma Model of Cancer."  相似文献   

7.
8.
9.
We have previously shown that a loss of stromal Cav-1 is a biomarker of poor prognosis in breast cancers. Mechanistically, a loss of Cav-1 induces the metabolic reprogramming of stromal cells, with increased autophagy/mitophagy, mitochondrial dysfunction and aerobic glycolysis. As a consequence, Cav-1-low CAFs generate nutrients (such as L-lactate) and chemical building blocks that fuel mitochondrial metabolism and the anabolic growth of adjacent breast cancer cells. It is also known that a loss of Cav-1 is associated with hyperactive TGF-β signaling. However, it remains unknown whether hyperactivation of the TGF-β signaling pathway contributes to the metabolic reprogramming of Cav-1-low CAFs. To address these issues, we overexpressed TGF-β ligands and the TGF-β receptor I (TGFβ-RI) in stromal fibroblasts and breast cancer cells. Here, we show that the role of TGF-β in tumorigenesis is compartment-specific, and that TGF-β promotes tumorigenesis by shifting cancer-associated fibroblasts toward catabolic metabolism. Importantly, the tumor-promoting effects of TGF-β are independent of the cell type generating TGF-β. Thus, stromal-derived TGF-β activates signaling in stromal cells in an autocrine fashion, leading to fibroblast activation, as judged by increased expression of myofibroblast markers, and metabolic reprogramming, with a shift toward catabolic metabolism and oxidative stress. We also show that TGF-β-activated fibroblasts promote the mitochondrial activity of adjacent cancer cells, and in a xenograft model, enhancing the growth of breast cancer cells, independently of angiogenesis. Conversely, activation of the TGF-β pathway in cancer cells does not influence tumor growth, but cancer cell-derived-TGF-β ligands affect stromal cells in a paracrine fashion, leading to fibroblast activation and enhanced tumor growth. In conclusion, ligand-dependent or cell-autonomous activation of the TGF-β pathway in stromal cells induces their metabolic reprogramming, with increased oxidative stress, autophagy/mitophagy and glycolysis, and downregulation of Cav-1. These metabolic alterations can spread among neighboring fibroblasts and greatly sustain the growth of breast cancer cells. Our data provide novel insights into the role of the TGF-β pathway in breast tumorigenesis, and establish a clear causative link between the tumor-promoting effects of TGF-β signaling and the metabolic reprogramming of the tumor microenvironment.  相似文献   

10.
Loss of stromal caveolin 1 (Cav-1) is a novel biomarker for cancer-associated fibroblasts that predicts poor clinical outcome in breast cancer and DCIS patients. We hypothesized that epithelial cancer cells may have the ability to drive Cav-1 downregulation in adjacent normal fibroblasts, thereby promoting the cancer associated fibroblast phenotype. To test this hypothesis directly, here we developed a novel co-culture model employing (i) human breast cancer cells (MCF7), and (ii) immortalized fibroblasts (hTERT-BJ1), which are grown under defined experimental conditions. Importantly, we show that co-culture of immortalized human fibroblasts with MCF7 breast cancer cells leads to Cav-1 downregulation in fibroblasts. These results were also validated using primary cultures of normal human mammary fibroblasts co-cultured with MCF7 cells. In this system, we show that Cav-1 downregulation is mediated by autophagic/lysosomal degradation, as pre-treatment with lysosome-specific inhibitors rescues Cav-1 expression. Functionally, we demonstrate that fibroblasts co-cultured with MCF7 breast cancer cells acquire a cancer associated fibroblast phenotype, characterized by Cav-1 downregulation, increased expression of myofibroblast markers and extracellular matrix proteins, and constitutive activation of TGFβ/Smad2 signaling. siRNA-mediated Cav-1 downregulation mimics several key changes that occur in co-cultured fibroblasts, clearly indicating that a loss of Cav-1 is a critical initiating factor, driving stromal fibroblast activation during tumorigenesis. As such, this co-culture system can now be used as an experimental model for generating “synthetic” cancer associated fibroblasts (CAFs). More specifically, these “synthetic” CAFs could be used for drug screening to identify novel therapeutics that selectively target the Cav-1-negative tumor micro-environment. Our findings also suggest that chloroquine, or other autophagy/lysosome inhibitors, may be useful as anti-cancer agents, to therapeutically restore the expression of stromal Cav-1 in cancer associated fibroblasts. We discuss this possibility, in light of the launch of a new clinical trial that uses chloroquine to treat DCIS patients: PINC (Preventing Invasive Breast Neoplasia with Cholorquine) [See http://clinicaltrials.gov/show/NCT01023477].  相似文献   

11.
12.
13.
Recently, we proposed a new paradigm for understanding the role of the tumor microenvironment in breast cancer onset and progression. In this model, cancer cells induce oxidative stress in adjacent fibroblasts. This, in turn, results in the onset of stromal autophagy, which produces recycled nutrients to “feed” anabolic cancer cells. However, it remains unknown how autophagy in the tumor microenvironment relates to inflammation, another key driver of tumorigenesis. To address this issue, here we employed a well-characterized co-culture system in which cancer cells induce autophagy in adjacent fibroblasts via oxidative stress and NFκB-activation. We show, using this co-culture system, that the same experimental conditions that result in an autophagic microenvironment, also drive in the production of numerous inflammatory mediators (including IL-6, IL-8, IL-10, MIp1α, IFNγ, RANTES (CCL5) and GMCSF). Furthermore, we demonstrate that most of these inflammatory mediators are individually sufficient to directly induce the onset of autophagy in fibroblasts. To further validate the in vivo relevance of these findings, we assessed the inflammatory status of Cav-1 (−/−) null mammary fat pads, which are a model of a bonafide autophagic microenvironment. Notably, we show that Cav-1 (−/−) mammary fat pads undergo infiltration with numerous inflammatory cell types, including lymphocytes, T-cells, macrophages and mast cells. Taken together, our results suggest that cytokine production and inflammation are key drivers of autophagy in the tumor microenvironment. These results may explain why a loss of stromal Cav-1 is a powerful predictor of poor clinical outcome in breast cancer patients, as it is a marker of both (1) autophagy and (2) inflammation in the tumor microenvironment. Lastly, hypoxia in fibroblasts was not sufficient to induce the full-blown inflammatory response that we observed during the co-culture of fibroblasts with cancer cells, indicating that key reciprocal interactions between cancer cells and fibroblasts may be required.Key words: caveolin-1, oxidative stress, cytokine production, inflammation, tumor microenvironment, autophagy, breast cancer  相似文献   

14.
15.
We have previously shown that a loss of stromal Cav-1 is a biomarker of poor prognosis in breast cancers. Mechanistically, a loss of Cav-1 induces the metabolic reprogramming of stromal cells, with increased autophagy/mitophagy, mitochondrial dysfunction and aerobic glycolysis. As a consequence, Cav-1-low CAFs generate nutrients (such as L-lactate) and chemical building blocks that fuel mitochondrial metabolism and the anabolic growth of adjacent breast cancer cells. It is also known that a loss of Cav-1 is associated with hyperactive TGF-β signaling. However, it remains unknown whether hyperactivation of the TGF-β signaling pathway contributes to the metabolic reprogramming of Cav-1-low CAFs. To address these issues, we overexpressed TGF-β ligands and the TGF-β receptor I (TGFβ-RI) in stromal fibroblasts and breast cancer cells. Here, we show that the role of TGF-β in tumorigenesis is compartment-specific, and that TGF-β promotes tumorigenesis by shifting cancer-associated fibroblasts toward catabolic metabolism. Importantly, the tumor-promoting effects of TGF-β are independent of the cell type generating TGF-β. Thus, stromal-derived TGF-β activates signaling in stromal cells in an autocrine fashion, leading to fibroblast activation, as judged by increased expression of myofibroblast markers, and metabolic reprogramming, with a shift toward catabolic metabolism and oxidative stress. We also show that TGF-β-activated fibroblasts promote the mitochondrial activity of adjacent cancer cells, and in a xenograft model, enhancing the growth of breast cancer cells, independently of angiogenesis. Conversely, activation of the TGF-β pathway in cancer cells does not influence tumor growth, but cancer cell-derived-TGF-β ligands affect stromal cells in a paracrine fashion, leading to fibroblast activation and enhanced tumor growth. In conclusion, ligand-dependent or cell-autonomous activation of the TGF-β pathway in stromal cells induces their metabolic reprogramming, with increased oxidative stress, autophagy/mitophagy and glycolysis, and downregulation of Cav-1. These metabolic alterations can spread among neighboring fibroblasts and greatly sustain the growth of breast cancer cells. Our data provide novel insights into the role of the TGF-β pathway in breast tumorigenesis, and establish a clear causative link between the tumor-promoting effects of TGF-β signaling and the metabolic reprogramming of the tumor microenvironment.  相似文献   

16.
Our recent studies have mechanistically implicated a loss of stromal Cav-1 expression and HIF1α-activation in driving the cancer-associated fibroblast phenotype, through the paracrine production of nutrients via autophagy and aerobic glycolysis. However, it remains unknown if HIF1α-activation is sufficient to confer the cancer-associated fibroblast phenotype. To test this hypothesis directly, we stably-expressed activated HIF1α in fibroblasts and then examined their ability to promote tumor growth using a xenograft model employing human breast cancer cells (MDA-MB-231). Fibroblasts harboring activated HIF1α showed a dramatic reduction in Cav-1 levels and a shift towards aerobic glycolysis, as evidenced by a loss of mitochondrial activity, and an increase in lactate production. Activated HIF1α also induced BNIP3 and BNIP3L expression, markers for the autophagic destruction of mitochondria. Most importantly, fibroblasts expressing activated HIF1α increased tumor mass by ∼2-fold and tumor volume by ∼3-fold, without a significant increase in tumor angiogenesis. In this context, HIF1α also induced an increase in the lymph node metastasis of cancer cells. Similar results were obtained by driving NFκB activation in fibroblasts, another inducer of autophagy. Thus, activated HIF1α is sufficient to functionally confer the cancer-associated fibroblast phenotype. It is also known that HIF1α expression is required for the induction of autophagy in cancer cells. As such, we next directly expressed activated HIF1α in MDA-MB-231 cells and assessed its effect on tumor growth via xenograft analysis. Surprisingly, activated HIF1α in cancer cells dramatically suppressed tumor growth, resulting in a 2-fold reduction in tumor mass and a three-fold reduction in tumor volume. We conclude that HIF1α activation in different cell types can either promote or repress tumorigenesis. Based on these studies, we suggest that autophagy in cancer-associated fibroblasts promotes tumor growth via the paracrine production of recycled nutrients, which can directly “feed” cancer cells. Conversely, autophagy in cancer cells represses tumor growth via their “self-digestion.” Thus, we should consider that the activities of various known oncogenes and tumor-suppressors may be compartment and cell-type specific, and are not necessarily an intrinsic property of the molecule itself. As such, other “classic” oncogenes and tumor suppressors will have to be re-evaluated to determine their compartment specific effects on tumor growth and metastasis. Lastly, our results provide direct experimental support for the recently proposed “autophagic tumor stroma model of cancer.”Key words: caveolin-1, autophagy, mitophagy, the Warburg effect, tumor stroma, hypoxia, HIF1A, NFκB, compartment-specific oncogenesis, cancer-associated fibroblasts  相似文献   

17.
18.
Mutations in the BRCA1 tumor suppressor gene are commonly found in hereditary ovarian cancers. Here, we used a co-culture approach to study the metabolic effects of BRCA1-null ovarian cancer cells on adjacent tumor-associated stromal fibroblasts. Our results directly show that BRCA1-null ovarian cancer cells produce large amounts of hydrogen peroxide, which can be abolished either by administration of simple antioxidants (N-acetyl-cysteine; NAC) or by replacement of the BRCA1 gene. Thus, the BRCA1 gene normally suppresses tumor growth by functioning as an antioxidant. Importantly, hydrogen peroxide produced by BRCA1-null ovarian cancer cells induces oxidative stress and catabolic processes in adjacent stromal fibroblasts, such as autophagy, mitophagy and glycolysis, via stromal NFκB activation. Catabolism in stromal fibroblasts was also accompanied by the upregulation of MCT4 and a loss of Cav-1 expression, which are established markers of a lethal tumor microenvironment. In summary, loss of the BRCA1 tumor suppressor gene induces hydrogen peroxide production, which then leads to metabolic reprogramming of the tumor stroma, driving stromal-epithelial metabolic coupling. Our results suggest that new cancer prevention trials with antioxidants are clearly warranted in patients that harbor hereditary/familial BRCA1 mutations.  相似文献   

19.
20.
Comment on: Capparelli C, et al. Cell Cycle 2012; 11:2272-84 and Capparelli C, et al. Cell Cycle 2012; 11:2285-302.Otto Warburg first observed that cancer cells preferentially undergo glycolysis instead of the mitochondrial TCA cycle even under oxygen-rich conditions. This form of energy metabolism in cancer cells is called “aerobic glycolysis” or the “Warburg effect.”1 Lisanti and colleagues have previously proposed an alternative model called the “the reverse Warburg effect,” in which aerobic glycolysis predominantly occurs in stromal fibroblasts.2 During this process, cancer cells secrete oxidative stress factors, such as hydrogen peroxide, into the tumor microenvironment, which induces autophagy. This leads to degradation of mitochondria (mitophagy) and elevated glycolysis in cancer-associated fibroblasts.3 Aerobic glycolysis results in the elevated production of pyruvate, ketone bodies and L-lactate, which can be utilized by cancer cells for anabolic growth and metastasis. At the molecular level, stromal fibroblasts lose expression of caveolin-1 and activate HIF-1a (Fig. 1), TGFβ and NFκB signaling.4 Stromal caveolin-1 expression predicts clinical outcome in breast cancer patients.5Open in a separate windowFigure 1. CTGF-mediated autophagy-senescence transition in tumor stroma promotes anabolic tumor growth and metastasis. Cancer cells secrete oxidative stress factors (H2O2) that induce autophagy in cancer-associated fibroblasts. Additionally, caveolin-1 (cav-1) loss leads to activation of connective tissue growth factor (CTGF) and HIF-1α that mediate autophagy and senescence in these stromal cells. This is called the autophagy-senescence transition (AST). AST leads to mitophagy and elevated glycolysis in cancer-associated fibroblasts. Aerobic glycolysis results in the elevated production of several nutrients (pyruvate, ketone bodies and L-lactate), which can be utilized by cancer cells for tumor growth and metastasis.In the June 15, 2012 issue of Cell Cycle, two studies by Capparelli et al. further validate the “autophagic tumor stroma model of cancer” described above, as well as identify novel mechanisms involved in this process.6,7 Autophagy and senescence are induced by the same stimuli and are known to occur simultaneously in cells. In the first study, the authors hypothesize that the onset of senescence in the tumor stroma in response to autophagy/mitophagy contributes to mitochondrial dysfunction and aerobic glycolysis. In order to genetically validate this process of autophagy-senescence transition (AST) (Fig. 1), Capparelli et al. overexpressed several autophagy-promoting factors (BNIP3, cathepsin B, Beclin-1 and ATG16L1) in hTERT fibroblasts to constitutively induce autophagy. Autophagic fibroblasts lost caveolin-1 expression and displayed enhanced tumor growth and metastasis when co-injected with breast cancer cells in mice, without an increase in angiogenesis. In contrast, constitutive activation of autophagy in breast cancer cells inhibited in vivo tumor growth. Autophagic fibroblasts also showed mitochondrial dysfunction, increased production of nutrients (L-lactate and ketone bodies) and features of senescence (β-galactosidase activity and p21 activation). AST was also demonstrated in human breast cancer patient samples.7 In the second study, using a similar experimental approach, the authors evaluated the role of the TGFβ target gene, connective tissue growth factor (CTGF), in the induction of AST and aerobic glycolysis in cancer-associated fibroblasts. CTGF would be activated in the tumor stroma upon loss of caveolin-1. CTGF overexpression in fibroblasts induced autophagy/mitophagy, glycolysis and L-lactate production in a HIF-1α-dependent manner along with features of senescence and oxidative stress. CTGF overexpression in fibroblasts also promoted tumor growth when co-injected with breast cancer cells in mice (Fig. 1), independent of angiogenesis. As expected, CTGF overexpression in breast cancer cells inhibited tumor growth. CTGF is known to be involved in extracellular matrix synthesis; however, the effects of CTGF overexpression in fibroblasts and tumor cells were found to be independent of this function.6Overall, the authors have identified a novel mechanism by which CTGF promotes AST and aerobic glycolysis in cancer-associated fibroblasts. In turn, the stromal cells stimulate anabolic tumor growth and metastasis. The authors also genetically validate the two-compartment model of cancer metabolism, whereby autophagy genes and CTGF have differential effects in stromal cells and tumor cells. The current studies have several implications for cancer therapy. The finding that HIF-1 activation is necessary for the induction of autophagy and senescence downstream of caveolin-1 loss and CTGF activation in stromal fibroblasts is intriguing. Activation of HIF-1 in the hypoxic tumor microenvironment is known to promote tumor cell growth, survival and therapeutic resistance.8 Therefore, targeting HIF-1 has the potential to block tumor progression through dual inhibitory effects on hypoxic cancer cell growth and survival as well as the induction of autophagy in stromal fibroblasts. CTGF and AST in the tumor stroma could serve as biomarkers for predicting clinical outcome, therapy response and metastasis. The two-compartment model of tumor metabolism raises further questions regarding the use of antioxidants and autophagy inhibitors/inducers for cancer therapy. The use of these agents in the clinic should be carefully evaluated considering their differential effects on stromal cells and cancer cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号