首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Background

The tumor suppressor protein p53 is a most promising target for the development of anticancer drugs. Allicin (diallylthiosulfinate) is one of the most active components of garlic (Alliium sativum L.) and possesses a variety of health-promoting properties with pharmacological applications. However, whether allicin plays an anti-cancer role against breast cancer cells through the induction of p53-mediated apoptosis remains unknown.

Methods and results

In this study, we investigate the anti-breast cancer effect of allicin in vitro by using MCF-7 and MD-MBA-231 cells. We found that allicin reduces cell viability, induces apoptosis and cell cycle arrest in both cells. Allicin activated p53 and caspase 3 expressions in both cells but produced different effects on the expression of p53-related biomarkers. In MDA-MB-231 cells, allicin up-regulated the mRNA and protein expression of A1BG and THBS1 while down-regulated the expression of TPM4. Conversely, the mRNA and protein expression of A1BG, THBS1 and TPM4 were all reduced in MCF-7 cells. Hence, allicin induces cell cycle arrest and apoptosis in breast cancer cells through p53 activation but it effects on the expression of p53-related biomarkers were dependent upon the specific type of breast cancer involved.

Conclusions

These findings suggest that allicin induces apoptosis and regulates biomarker expression in breast cancer cell lines through modulating the p53 signaling pathway. Furthermore, our results promote the utility of allicin as compound for further studies as an anticancer drug targeting p53.

  相似文献   

2.
Carcinogenesis is a multistage process, involving oncogene activation and tumor suppressor gene inactivation as well as complex interactions between tumor and host tissues, leading ultimately to an aggressive metastatic phenotype. Among many genetic lesions, mutational inactivation of p53 tumor suppressor, the “guardian of the genome,” is the most frequent event found in 50% of human cancers. p53 plays a critical role in tumor suppression mainly by inducing growth arrest, apoptosis, and senescence, as well as by blocking angiogenesis. In addition, p53 generally confers the cancer cell sensitivity to chemoradiation. Thus, p53 becomes the most appealing target for mechanism-driven anticancer drug discovery. This review will focus on the approaches currently undertaken to target p53 and its regulators with an overall goal either to activate p53 in cancer cells for killing or to inactivate p53 temporarily in normal cells for chemoradiation protection. The compounds that activate wild type (wt) p53 would have an application for the treatment of wt p53-containing human cancer. Likewise, the compounds that change p53 conformation from mutant to wt p53 (p53 reactivation) or that kill the cancer cells with mutant p53 using a synthetic lethal mechanism can be used to selectively treat human cancer harboring a mutant p53. The inhibitors of wt p53 can be used on a temporary basis to reduce the normal cell toxicity derived from p53 activation. Thus, successful development of these three classes of p53 modulators, to be used alone or in combination with chemoradiation, will revolutionize current anticancer therapies and benefit cancer patients.  相似文献   

3.
4.
5.
6.
The p53 family includes three members that share significant sequence homology, yet exhibit fundamentally different functions in tumorigenesis. Whereas p53 displays all characteristics of a classical tumor suppressor, its homologues p63 and p73 do not. We have previously shown, that NH(2)-terminally truncated isoforms of p73 (Delta TA-p73), which act as dominant-negative inhibitors of p53 are frequently overexpressed in cancer cells. Here we provide evidence that Delta TA-p73 isoforms also affect the retinoblastoma protein (RB) tumor suppressor pathway independent of p53. Delta TA-p73 isoforms inactivate RB by increased phosphorylation, resulting in enhanced E2F activity and proliferation of fibroblasts. By inactivating the two major tumor suppressor pathways in human cells they act functionally analogous to several viral oncoproteins. These findings provide an explanation for the fundamentally different functions of p53 and p73 in tumorigenesis.  相似文献   

7.
Heiber JF  Barber GN 《Journal of virology》2011,85(20):10440-10450
Vesicular stomatitis virus (VSV), a negative-strand RNA rhabdovirus, preferentially replicates in and eradicates transformed versus nontransformed cells and is thus being considered for use as a potential anticancer treatment. The genetic malleability of VSV also affords an opportunity to develop more potent agents that exhibit increased therapeutic activity. The tumor suppressor p53 has been shown to exert potent antitumor properties, which may in part involve stimulating host innate immune responses to malignancies. To evaluate whether VSV expressing p53 exhibited enhanced oncolytic action, the murine p53 (mp53) gene was incorporated into recombinant VSVs with or without a functional viral M gene-encoded protein that could either block (VSV-mp53) or enable [VSV-M(mut)-mp53] host mRNA export following infection of susceptible cells. Our results indicated that VSV-mp53 and VSV-M(mut)-mp53 expressed high levels of functional p53 and retained the ability to lyse transformed versus normal cells. In addition, we observed that VSV-ΔM-mp53 was extremely attenuated in vivo due to p53 activating innate immune genes, such as type I interferon (IFN). Significantly, immunocompetent animals with metastatic mammary adenocarcinoma exhibited increased survival following treatment with a single inoculation of VSV-ΔM-mp53, the mechanisms of which involved enhanced CD49b+ NK and tumor-specific CD8+ T cell responses. Our data indicate that VSV incorporating p53 could provide a safe, effective strategy for the design of VSV oncolytic therapeutics and VSV-based vaccines.  相似文献   

8.
9.
The scaffold protein Spinophilin (SPN) is a regulatory subunit of phosphatase1a located at 17q21.33. This region is frequently associated with microsatellite instability and LOH containing a relatively high density of known tumor suppressor genes, including BRCA1. Several linkage studies have suggested the existence of an unknown tumor suppressor gene distal to BRCA1. Spn may be this gene, but the mechanism through which this gene makes its contribution to cancer has not been described. In this study, we aimed to determine how loss of Spn may contribute to tumorigenesis. We explored the contribution of SPN to PP1a-mediated Rb regulation. We found that the loss of Spn downregulated PPP1CA and PP1a activity, resulting in a high level of phosphorylated Rb and increased ARF and p53 activity. However, in the absence of p53, reduced levels of SPN enhanced the tumorigenic potential of the cells. Furthermore, the ectopic expression of SPN in human tumor cells greatly reduced cell growth. Taken together, our results demonstrate that the loss of Spn induces a proliferative response by increasing Rb phosphorylation, which, in turn, activates p53, thereby neutralizing the proliferative response. We suggest that Spn may be the tumor suppressor gene located at 17q21.33 acting through Rb regulation.  相似文献   

10.
Summary— The wild-type human p53 tumor suppressor gene was tested for its ability to modulate cytotoxic activity of in vitro activated peripheral blood lymphocytes. Peripheral blood mononuclear cells (PBMCs) were stimulated by phytohemagglutinin (PHA), interferon α2b (IFNα2b), interleukin 2 (IL-2) or their combinations to induce cytotoxicity. This stimulation significantly increased the percentage of cells expressing p53, which was at its maximum when induced by IL-2 combined with IFNα2b. The role of p53 in the modulation of different aspects of cytotoxic activity of these cells was analyzed by studying the effects of p53 abrogation by antisense oligonucleotide (p53 AS) treatment in comparison with p53 sense or scrambled (missense) oligonucleotide (p53 S or p53 MS) treatment. We show that p53 plays a key role through induction of apoptosis in target cells (tumor necrosis factor pathway) rather than through osmolytic degeneration (perforin pathway) which is only slightly increased by p53 abrogation. Meanwhile, in vitro abrogation of p53 expression in PBL was found to be accompanied by an increase of CD8+ lymphocytes and an important increase of the CD56 ‘bright’ NK cell sub-population.  相似文献   

11.
Inactivation of the Arf-Mdm2-p53 tumor suppressor pathway is a necessary event for tumorigenesis. Arf controls Mdm2, which in turn regulates p53, but Arf and Mdm2 also have p53-independent functions that affect tumor development. Moreover, inhibition of oncogene-induced tumorigenesis relies on Arf and p53, but the requirements of Arf and p53 in tumor development initiated in the absence of overt oncogene overexpression and the role of Mdm2 in this process remain unclear. In a series of genetic experiments in mice with defined deficiencies in Arf, Mdm2 and/or p53, we show Mdm2 haploinsufficiency significantly delayed tumorigenesis in mice deficient in Arf and p53. Mdm2 heterozygosity significantly inhibited tumor development in the absence of Arf, and in contrast to Myc oncogene-driven cancer, this delay in tumorigenesis could not be rescued with the presence of one allele of Arf. Notably, Mdm2 haploinsufficieny blocked the accelerated tumor development in Arf deficient mice caused by p53 heterozygosity. However, tumorigenesis was not inhibited in Mdm2 heterozygous mice lacking both alleles of p53 regardless of Arf status. Surprisingly, loss of Arf accelerated tumor development in p53-null mice. Tumor spectrum was largely dictated by Arf and p53 status with Mdm2 haploinsufficiency only modestly altering the tumor type in some of the genotypes and not the number of primary tumors that arose. Therefore, the significant effects of Mdm2 haploinsufficiency on tumor latency were independent of Arf and required at least one allele of p53, and an Mdm2 deficiency had minor effects on the types of tumors that developed. These data also demonstrate that decreased levels of Mdm2 are protective in the presence of multiple genetic events in Arf and p53 genes that normally accelerate tumorigenesis.  相似文献   

12.
13.
14.
魏永永  侯静  唐文如  罗瑛 《遗传》2012,34(12):1513-1521
肿瘤发生是抑癌基因失活和原癌基因激活共同作用的结果。p53基因被认为是目前最重要的抑癌基因, 50%以上的肿瘤中存在p53基因的点突变现象; 而Ras基因是肿瘤中突变率较高的原癌基因, 其突变率在某些肿瘤中高达30%~90%。研究发现, 肿瘤发生过程中抑癌基因p53与原癌基因Ras之间存在复杂的相互协同作用。根据目前的文献报道, p53与Ras之间的协同作用可以分为3种:第一, p53对Ras的调节作用; 第二, Ras对p53的调节作用; 第三, p53和Ras共同调控某些与肿瘤发生相关的关键基因。了解p53与Ras之间的3种调控作用将有助于我们进一步认识p53失活与Ras激活协同促进肿瘤发生的分子通路和机制, 同时也将为癌症的个性化治疗和药物靶点的选择提供重要依据。因此, 文章将对近年来所发现的p53与Ras的各种协同作用机制及其与肿瘤发生的关系进行概括和综述。  相似文献   

15.
目的 p53是人体内重要的肿瘤抑制因子,但在人类肿瘤中因高频突变而失去抑癌功能。突变型p53 (mutant p53,mutp53)可促进肿瘤的发生、发展和转移。由于在肿瘤细胞中通常有较高表达,mutp53已成为区别于正常细胞的一个特异性抗肿瘤靶点。本研究旨在探索穿心莲内酯的抗肿瘤作用机制,为寻找靶向mutp53的抗肿瘤化合物提供理论依据。方法 构建可以快速筛选具有恢复mutp53下游转录因子的荧光素酶系统,观察穿心莲内酯对H1299-p53 R273H-PUMAluciferase和H1299-p53R175H-PUMA-luciferase细胞中PUMA基因的表达情况;采用免疫荧光实验,检测穿心莲内酯对HT29(R273H)和SK-BR-3 (R175H)细胞中mutp53的表达影响;采用免疫印迹实验进一步观察穿心莲内酯恢复了mutp53肿瘤细胞中p53下游靶蛋白PUMA、p21、Noxa的表达;随后采用MTT和流式细胞分析,检测穿心莲内酯对肿瘤细胞增殖和凋亡的影响;此外,还通过si RNA敲低Hsp70表达后,研究穿心莲内酯对mutp53下游基因的重激活作用。结果 穿心莲内酯可以...  相似文献   

16.
p53 mutations and downregulation of promyelocytic leukemia (PML) are common genetic alterations in human cancers. In healthy cells these two key tumor suppressors exist in a positive regulatory loop, promoting cell death and cellular senescence. However, the influence of their interplay on tumorigenesis has not been explored directly in vivo. The contribution of PML to mutant p53 driven cancer was evaluated in a mouse model harboring a p53 mutation (p53wild-type/R172H) that recapitulates a frequent p53 mutation (p53R175H) in human sporadic and Li-Fraumeni cancers. These mice with PML displayed perturbation of the hematopoietic compartment, manifested either as lymphoma or extramedullary hematopoiesis (EMH). EMH was associated with peripheral blood leucocytosis and macrocytic anemia, suggestive of myeloproliferative- myelodysplastic overlap. In contrast, a complete loss of PML from these mice resulted in a marked alteration in tumor profile. While the incidence of lymphomas was unaltered, EMH was not detected and the majority of mice succumbed to sarcomas. Further, males lacking PML exhibited a high incidence of soft tissue sarcomas and reduced survival, while females largely developed osteosarcomas, without impact on survival. Together, these findings demonstrate that PML is an important tumor suppressor dictating disease development in a pertinent mouse model of human cancer.

Key Points: (1) A mutant p53 allele disrupts hematopoiesis in mice, by promoting lymphomas and myeloproliferative / myelodysplastic overlap. (2) Coincidental p53 allele mutation and PML loss shifts the tumor profile toward sarcoma formation, which is paralleled in human leiomyosarcomas (indicated by immunohistochemistry; IHC).  相似文献   

17.
Advanced-stage peritoneal carcinomatosis is resistant to current chemotherapy treatment and, in the case of metastatic ovarian cancer, results in a devastating 15%–20% survival rate. Therapeutics that restore genes inactivated during oncogenesis are predicted to be more potent and specific than current therapies. Experiments with viral vectors have demonstrated the theoretical utility of expressing the p53 tumor suppressor gene in cancer cells. However, clinically useful alternative approaches for introducing p53 activity into cancer cells are clearly needed. It has been hypothesized that direct reactivation of endogenous p53 protein in cancer cells will be therapeutically beneficial, but few tests of this hypothesis have been carried out in vivo. We report that a transducible D-isomer RI-TATp53C′ peptide activates the p53 protein in cancer cells, but not normal cells. RI-TATp53C′ peptide treatment of preclinical terminal peritoneal carcinomatosis and peritoneal lymphoma models results in significant increases in lifespan (greater than 6-fold) and the generation of disease-free animals. These proof-of-concept observations show that specific activation of endogenous p53 activity by a macromolecular agent is therapeutically effective in preclinical models of terminal human malignancy. Our results suggest that TAT-mediated transduction may be a useful strategy for the therapeutic delivery of large tumor suppressor molecules to malignant cells in vivo.  相似文献   

18.
The human polyoma viruses JCV and BKV establish asymptomatic persistent infection in 65%-90% of humans but can cause severe illness under immunosuppressive conditions. The mechanisms by which these viruses evade immune recognition are unknown. Here we show that a viral miRNA identical in sequence between JCV and BKV targets the stress-induced ligand ULBP3, which is a protein recognized by the killer receptor NKG2D. Consequently, viral miRNA-mediated ULBP3 downregulation results in reduced NKG2D-mediated killing of virus-infected cells by natural killer (NK) cells. Importantly, when the activity of the viral miRNA was inhibited during infection, NK cells killed the infected cells more efficiently. Because NKG2D is also expressed by various T cell subsets, we propose that JCV and BKV use an identical miRNA that targets ULBP3 to escape detection by both the innate and adaptive immune systems, explaining how these viruses remain latent without being eliminated by the immune system.  相似文献   

19.
The regulatory activities of mouse CD4+Foxp3+ T cells on various immune cells, including NK cells, have been well documented. Under some conditions, conventional CD4+Foxp3 T cells in the periphery are able to acquire inhibitory function on other T cells, but their roles in controlling innate immune cells are poorly defined. As a potential cellular therapy for cancer, ex vivo activated CD4+Foxp3 effector T cells are often infused back in vivo to suppress tumor growth and metastasis. Whether such activated T cells could affect NK-cell control of tumorigenesis is unclear. In the present study, we found that mitogen-activated CD4+Foxp3 T cells exhibited potent suppressor function on NK-cell proliferation and cytotoxicity in vitro, and notably facilitated B16 melanoma metastasis in vivo. Suppression of NK cells by activated CD4+Foxp3 T cells is cell-cell contact dependent and is mediated by Qa-1:NKG2A interaction, as administration of antibodies blocking either Qa-1 or NKG2A could completely reverse this suppression, and significantly inhibited otherwise facilitated melanoma metastasis. Moreover, activated CD4+Foxp3 cells from Qa-1 knockout mice completely lost the suppressor activity on NK cells, and failed to facilitate melanoma metastasis when transferred in vivo. Taken together, our findings indicate that innate anti-tumor response is counter regulated by the activation of adaptive immunity, a phenomenon we term as “activation-induced inhibition”. Thus, the regulatory role of activated CD4+Foxp3 T cells in NK-cell activity must be taken into consideration in the future design of cancer therapies.  相似文献   

20.
p53 tumor suppressor has been identified as a protein interacting with the large T antigen produced by simian vacuolating virus 40 (SV40). Subsequent research on p53 inhibition by SV40 and other tumor viruses has not only helped to gain a better understanding of viral biology, but also shaped our knowledge of human tumorigenesis. Recent studies have found, however, that inhibition of p53 is not strictly in the realm of viruses. Some bacterial pathogens also actively inhibit p53 protein and induce its degradation, resulting in alteration of cellular stress responses. This phenomenon was initially characterized in gastric epithelial cells infected with Helicobacter pylori, a bacterial pathogen that commonly infects the human stomach and is strongly linked to gastric cancer. Besides H. pylori, a number of other bacterial species were recently discovered to inhibit p53. These findings provide novel insights into host–bacteria interactions and tumorigenesis associated with bacterial infections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号