首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
DNA helix: the importance of being GC-rich   总被引:12,自引:2,他引:12       下载免费PDF全文
  相似文献   

5.
6.
7.
The DNA damage response: sensing and signaling   总被引:17,自引:0,他引:17  
The protein kinases ATM and ATR are central components of the checkpoint mechanisms that signal the presence of damaged DNA and stalled replication forks. Recent studies have provided important new insights into how these kinases work together with their regulatory subunits, DNA repair proteins and adaptor proteins to sense abnormal DNA structures and implement the appropriate DNA damage response. These advances have provided a more detailed understanding of the interface between damaged DNA and the checkpoint sensor proteins.  相似文献   

8.
9.

Background

O-Linked β-N-acetylglucosamine (O-GlcNAc) is a reversible, post-translational, and regulatory modification of nuclear, mitochondrial, and cytoplasmic proteins that is responsive to cellular stress. The role of O-GlcNAcylation in the ataxia-telangiectasia mutated (ATM)-mediated DNA damage response is unknown. It is unclear whether ATM, which is an early acting and central component of the signal transduction system activated by DNA double strand breaks, is an O-GlcNAc-modified protein.

Methods

The effect of O-GlcNAc modification on ATM activation was examined using two inhibitors, PUGNAc and DON that increase and decrease, respectively, levels of protein O-GlcNAcylation. To assess O-GlcNAcylation of ATM, immunoprecipitation and immunoblot analyses using anti-ATM or anti-O-GlcNAc antibody were performed in HeLa cells and primary cultured neurons. Interaction of ATM with O-GlcNAc transferase (OGT), the enzyme that adds O-GlcNAc to target proteins, was examined by immunoprecipitation and immunoblot analyses using anti-ATM.

Results

Enhancement of protein O-GlcNAcylation increased levels of X-irradiation-induced ATM activation. However, decreases in protein O-GlcNAcylation did not affect levels of ATM activation, but these decreases did delay ATM activation and ATM recovery processes based on assessment of de-phosphorylation of phospho-ATM. Thus, activation and recovery of ATM were affected by O-GlcNAcylation. ATM was subjected to O-GlcNAcylation, and ATM interacted with OGT. The steady-state O-GlcNAc level of ATM was not significantly responsive to X-irradiation or oxidative stress.

General significance

ATM is an O-GlcNAc modified protein, and dynamic O-GlcNAc modification affects the ATM-mediated DNA damage response.  相似文献   

10.
11.
Post-translational modification by the ubiquitin-like protein SUMO is often regulated by cellular signals that restrict the modification to appropriate situations. Nevertheless, many SUMO-specific ligases do not exhibit much target specificity, and--compared with the diversity of sumoylation substrates--their number is limited. This raises the question of how SUMO conjugation is controlled in vivo. We report here an unexpected mechanism by which sumoylation of the replication clamp protein, PCNA, from budding yeast is effectively coupled to S phase. We find that loading of PCNA onto DNA is a prerequisite for sumoylation in vivo and greatly stimulates modification in vitro. To our surprise, however, DNA binding by the ligase Siz1, responsible for PCNA sumoylation, is not strictly required. Instead, the stimulatory effect of DNA on conjugation is mainly attributable to DNA binding of PCNA itself. These findings imply a change in the properties of PCNA upon loading that enhances its capacity to be sumoylated.  相似文献   

12.
13.
Göhler T  Munoz IM  Rouse J  Blow JJ 《DNA Repair》2008,7(5):775-787
Monoubiquitination of proliferating cell nuclear antigen (PCNA) enables translesion synthesis (TLS) by specialized DNA polymerases to replicate past damaged DNA. We have studied PCNA modification and chromatin recruitment of TLS polymerases in Xenopus egg extracts and mammalian cells. We show that Xenopus PCNA becomes ubiquitinated and sumoylated after replication stress induced by UV or aphidicolin. Under these conditions the TLS polymerase eta was recruited to chromatin and also became monoubiquitinated. PTIP/Swift is an adaptor protein for the ATM/ATR kinases. Immunodepletion of PTIP/Swift from Xenopus extracts prevented efficient PCNA ubiquitination and polymerase eta recruitment to chromatin during replicative stress. In addition to PCNA ubiquitination, efficient polymerase eta recruitment to chromatin also required ATR kinase activity. We also show that PTIP depletion from mammalian cells by RNAi reduced PCNA ubiquitination in response to DNA damage, and also decreased the recruitment to chromatin of polymerase eta and the recombination protein Rad51. Our results suggest that PTIP/Swift is an important new regulator of DNA damage avoidance in metazoans.  相似文献   

14.
The DNA damage response: ten years after   总被引:14,自引:0,他引:14  
The DNA damage response (DDR), through the action of sensors, transducers, and effectors, orchestrates the appropriate repair of DNA damage and resolution of DNA replication problems, coordinating these processes with ongoing cellular physiology. In the past decade, we have witnessed an explosion in understanding of DNA damage sensing, signaling, and the complex interplay between protein phosphorylation and the ubiquitin pathway employed by the DDR network to execute the response to DNA damage. These findings have important implications for aging and cancer.  相似文献   

15.
16.
17.
18.
受PCNA翻译后修饰调控的DNA损伤耐受机制   总被引:1,自引:0,他引:1  
秦周帅  张传林  萧伟 《生命科学》2014,(11):1143-1156
为了应对DNA损伤复制阻滞,增殖细胞核抗原(proliferating cell nuclear antigen,PCNA)164位点的赖氨酸残基能够发生一系列的泛素化修饰并介导两种不用的损伤耐受机制,即DNA跨损伤合成(TLS)和无错耐受通路。目前,单泛素化的PCNA介导DNA跨损伤合成通路,而多泛素化的PCNA介导无错耐受通路这一观点已被普遍认可。另外,PCNA的164位点还能被泛素类似物小蛋白(SUMO)修饰,从而抑制DNA双链断裂重组。总结PCNA的翻译后修饰及其在DNA损伤应答过程中的作用机制,有助于我们了解PCNA在DNA损伤耐受机制中的中心作用。重点总结PCNA的翻译后修饰如何调控真核生物DNA损伤应答的不同途径。  相似文献   

19.
20.
Why are there so many dimeric proteins and enzymes? While for heterodimers a functional explanation seems quite reasonable, the case of homodimers is more puzzling. The number of homodimers found in all living organisms is rapidly increasing. A thorough inspection of the structural data from the available literature and stability (measured from denaturation-renaturation experiments) allows one to suggest that homodimers can be divided into three main types according to their mass and the presence of a (relatively) stable monomeric intermediate in the folding-unfolding pathway. Among other explanations, we propose that an essential advantage for a protein being dimeric may be the proper and rapid assembly in the cellular milieu.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号