首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Monopolar spindle 1 (MPS1), a mitotic kinase that is overexpressed in several human cancers, contributes to the alignment of chromosomes to the metaphase plate as well as to the execution of the spindle assembly checkpoint (SAC). Here, we report the identification and functional characterization of three novel inhibitors of MPS1 of two independent structural classes, N-(4-{2-[(2-cyanophenyl)amino][1,2,4]triazolo[1,5-a]pyridin-6-yl}phenyl)-2-phenylacetamide (Mps-BAY1) (a triazolopyridine), N-cyclopropyl-4-{8-[(2-methylpropyl)amino]-6-(quinolin-5-yl)imidazo[1,2-a]pyrazin-3-yl}benzamide (Mps-BAY2a) and N-cyclopropyl-4-{8-(isobutylamino)imidazo[1,2-a]pyrazin-3-yl}benzamide (Mps-BAY2b) (two imidazopyrazines). By selectively inactivating MPS1, these small inhibitors can arrest the proliferation of cancer cells, causing their polyploidization and/or their demise. Cancer cells treated with Mps-BAY1 or Mps-BAY2a manifested multiple signs of mitotic perturbation including inefficient chromosomal congression during metaphase, unscheduled SAC inactivation and severe anaphase defects. Videomicroscopic cell fate profiling of histone 2B-green fluorescent protein-expressing cells revealed the capacity of MPS1 inhibitors to subvert the correct timing of mitosis as they induce a premature anaphase entry in the context of misaligned metaphase plates. Hence, in the presence of MPS1 inhibitors, cells either divided in a bipolar (but often asymmetric) manner or entered one or more rounds of abortive mitoses, generating gross aneuploidy and polyploidy, respectively. In both cases, cells ultimately succumbed to the mitotic catastrophe-induced activation of the mitochondrial pathway of apoptosis. Of note, low doses of MPS1 inhibitors and paclitaxel (a microtubular poison) synergized at increasing the frequency of chromosome misalignments and missegregations in the context of SAC inactivation. This resulted in massive polyploidization followed by the activation of mitotic catastrophe. A synergistic interaction between paclitaxel and MPS1 inhibitors could also be demonstrated in vivo, as the combination of these agents efficiently reduced the growth of tumor xenografts and exerted superior antineoplastic effects compared with either compound employed alone. Altogether, these results suggest that MPS1 inhibitors may exert robust anticancer activity, either as standalone therapeutic interventions or combined with microtubule-targeting chemicals.  相似文献   

2.
In this study, we determined whether p53 expression affected the sensitivity of non–small cell lung cancer (NSCLC) and colon cancer cells to bleomycin (BLM). Two human NSCLC cell lines (A549 expressing wild‐type p53 and p53‐null H1299) and two colon cancer cell lines (HCT116 p53+/+ and its p53 deficient subline HCT116 p53?/?) were subjected to treatment with BLM. Cells were treated with various concentrations of BLM, and cellular viability was assessed by formazan assay. To investigate the role of p53 in BLM sensitivity, we transduced cells with adenovirus with wild‐type p53, dominant‐negative p53, and GFP control, and analyzed the effect on cellular viability. Cells expressing wild‐type p53 were more sensitive to BLM than p53‐null cells in both NSCLC and colon cancer cells. Sensitivity to BLM of the cells with wild‐type p53 was reduced by overexpression of dominant‐negative p53, while BLM sensitivity of p53‐null cells was increased by wild‐type p53 in both NSCLC cells and colon cancer cells. In conclusion, our data show that p53 sensitizes all four cancer cells lines tested to BLM toxicity and overexpression of p53 confers sensitivity to the cytotoxic activity of the anticancer agent in p53‐null cells. © 2010 Wiley Periodicals, Inc. J Biochem Mol Toxicol 24:260–269, 2010; View this article online at wileyonlinelibrary.com . DOI 10.1002/jbt.20334  相似文献   

3.
Here we report a comprehensive biological characterization of a potent and selective small-molecule inhibitor of the DNA damage response (DDR) kinase ATR. We show a profound synthetic lethal interaction between ATR and the ATM-p53 tumor suppressor pathway in cells treated with DNA-damaging agents and establish ATR inhibition as a way to transform the outcome for patients with cancer treated with ionizing radiation or genotoxic drugs.  相似文献   

4.
The effect of the pan c-Jun N-terminal kinase (JNK) inhibitor SP600125 on the proliferation of human lung carcinoma A549 cells has been evaluated. We have shown that SP600125 completely inhibited the proliferation of A549 cells, the cycle arrest being in G2/M phase. When cells were treated with SP600125 for >12h, a cell population with DNA content of 4n to 8n was detected. Moreover, the effect of SP600125 on the expression of cell cycle related proteins was an upregulation of p53 protein accompanied by an increase in its molecular mass. Prolonged SP600125 treatment downregulated p21, Bax and Mdm2 expression, but increased the level of the cellular p53-Mdm2 complex. Taken together, we show that SP600125 could induce G2/M cell cycle arrest and endoreduplication in a p21 independent manner, and that SP600125 could also post-translationally modify p53 to modify its function. Our data show that basic JNK activity plays an important role in the progression of the cell cycle at G2/M cell phase.  相似文献   

5.
Mitochondria play essential roles in cellular metabolism, redox homeostasis, and regulation of cell death. Emerging evidences suggest that cancer cells exhibit various degrees of mitochondrial dysfunctions and metabolic alterations, which may serve as a basis to develop therapeutic strategies to preferentially kill the malignant cells. Mitochondria as a therapeutic target for cancer treatment is gaining much attention in the recent years, and agents that impact mitochondria with anticancer activity have been identified and tested in vitro and in vivo using various experimental systems. Anticancer agents that directly target mitochondria or indirectly affect mitochondrial functions are collectively classified as mitocans. This review article focuses on several natural compounds that preferentially kill cancer cells with mitochondrial dysfunction, and discusses the possible underlying mechanisms and their therapeutic implications in cancer treatment. Mitocans that have been comprehensively reviewed recently are not included in this article. Important issues such as therapeutic selectivity and the relevant biochemical basis are discussed in the context of future perspectives.  相似文献   

6.
Numb is known as a cell fate determinant as it identifies the direction of cell differentiation via asymmetrical partitioning during mitosis. It is considered as a tumour suppressor, and a frequent loss of Numb expression in breast cancer is noted. Numb forms a tri‐complex with p53 and E3 ubiquitin ligase HDM2 (also known as MDM2), thereby preventing the ubiquitination and degradation of p53. In this study, we examined Numb expression in 125 patients with triple‐negative breast cancer (TNBC). The results showed that 61 (48.8%) patients presented with a deficient or decreased Numb expression. The percentage of Ki67 > 14% in the retained Numb group was significantly lower than that in the decreased and deficient Numb groups (86.00% vs. 98.40%, P = .0171). This study aimed to detect the expression and migration of Numb, HDM2 and p53 in the membrane, cytoplasmic and nuclear fractions of normal mammary epithelial cell line MCF‐10A and basal‐like TNBC cell line MDA‐MB‐231. We obtained the cell fractions to identify changes in these three protein levels after the re‐expression of NUMB in the MDA‐MB‐231 cells and the knocking down of NUMB in the MCF‐10A cells. Results showed that Numb regulates p53 levels in the nucleus where the protein levels of Numb are positively correlated with p53 levels, regardless if it is re‐expressed in the MDA‐MB‐231 cells or knocked down in the MCF‐10A cells. Moreover, HDM2 was remarkably decreased only in the membrane fraction of NUMB knock‐down cells; however, its mRNA levels were increased significantly. Our results reveal a previously unknown molecular mechanism that Numb can migrate into the nucleus and interact with HDM2 and p53.  相似文献   

7.
Self-renewal, differentiation, and tumorigenicity characterize cancer stem cells (CSCs), which are rare and maintained by specific cell fate regulators. CSCs are isolated from glioblastoma multiforme (GBM) and may be responsible for the lethality of incurable brain tumors. Brain CSCs may arise from the transformation of undifferentiated, nestin-positive neural stem or progenitor cells and GFAP-expressing astrocytes. Here, we report a role of Nanog in the genesis of cancer stem-like cells. Using primary murine p53-knockout astrocytes (p53−/− astrocytes), we provide evidence that enforced Nanog expression can increase the cellular growth rate and transform phenotypes in vitro and in vivo. In addition, Nanog drives p53−/− astrocytes toward a dedifferentiated, CSC-like phenotype with characteristic neural stem cell/progenitor marker expression, neurosphere formation, self-renewal activity, and tumor development. These findings suggest that Nanog promotes dedifferentiation of p53-deficient mouse astrocytes into cancer stem-like cells by changing the cell fate and transforming cell properties.  相似文献   

8.
By GST pull downs and co-immunoprecipitation analyses we found that recombinant Chk2 and HDM2 can form stable complexes in vitro. Chk2/HDM2 complexes were also detected in transfected Cos-1 cells over-expressing both proteins. Furthermore, we show that HDM2, as would be expected, severely affects the Chk2-catalyzed phosphorylation of p53. HDM2 itself is only slightly phosphorylated by Chk2. However, whereas HDM2 inhibits the Chk2-catalyzed p53 phosphorylation, HDM2 phosphorylation by Chk2 doubles in the presence of p53. The significance of the HDM2 phosphorylation is unknown, but it is possible that it might influence the stability of the HDM2/p53 complex.  相似文献   

9.
Many cancer cells are unable to maintain a numerically stable chromosome complement. It is well established that aberrant cell division can generate progeny with increased ploidy, but the genetic factors required for maintenance of diploidy are not well understood. Using an isogenic model system derived by gene targeting, we examined the role of Chk1 in p53-proficient and -deficient cancer cells. Targeted inactivation of a single CHK1 allele in stably diploid cells caused an elevated frequency of mitotic bypass if p53 was naturally mutated or experimentally disrupted by homologous recombination. CHK1-haploinsufficient, p53-deficient cells frequently underwent sequential rounds of DNA synthesis without an intervening mitosis. These aberrant cell cycles resulted in whole-genome endoreduplication and tetraploidization. The unscheduled bypass of mitosis could be suppressed by targeted reversion of a p53 mutation or by exogenous expression of Cdk1. In contrast, the number of tetraploid cells was not increased in isogenic cell populations that harbor hypomorphic ATR mutations, suggesting that suppression of unscheduled mitotic bypass is a distinct function of Chk1. These results are consistent with a recently described role for Chk1 in promoting the expression of genes that promote cell cycle transitions and demonstrate how Chk1 might prevent tetraploidization during the cancer cell cycle.  相似文献   

10.
Based on previous reports of certain 5-deazaflavin derivatives being capable of activating the tumour suppressor p53 in cancer cells through inhibition of the p53-specific ubiquitin E3 ligase HDM2, we have conducted an structure–activity relationship (SAR) analysis through systematic modification of the 5-deazaflavin template. This analysis shows that HDM2-inhibitory activity depends on a combination of factors. The most active compounds (e.g., 15) contain a trifluoromethyl or chloro substituent at the deazaflavin C9 position and this activity depends to a large extent on the presence of at least one additional halogen or methyl substituent of the phenyl group at N10. Our SAR results, in combination with the HDM2 RING domain receptor recognition model we present, form the basis for the design of drug-like and potent activators of p53 for potential cancer therapy.  相似文献   

11.
Many cancer cells are unable to maintain a numerically stable chromosome complement. It is well established that aberrant cell division can generate progeny with increased ploidy, but the genetic factors required for maintenance of diploidy are not well understood. Using an isogenic model system derived by gene targeting, we examined the role of Chk1 in p53-proficient and -deficient cancer cells. Targeted inactivation of a single CHK1 allele in stably diploid cells caused an elevated frequency of mitotic bypass if p53 was naturally mutated or experimentally disrupted by homologous recombination. CHK1-haploinsufficient, p53-deficient cells frequently underwent sequential rounds of DNA synthesis without an intervening mitosis. These aberrant cell cycles resulted in whole-genome endoreduplication and tetraploidization. The unscheduled bypass of mitosis could be suppressed by targeted reversion of a p53 mutation or by exogenous expression of Cdk1. In contrast, the number of tetraploid cells was not increased in isogenic cell populations that harbor hypomorphic ATR mutations, suggesting that suppression of unscheduled mitotic bypass is a distinct function of Chk1. These results are consistent with a recently described role for Chk1 in promoting the expression of genes that promote cell cycle transitions and demonstrate how Chk1 might prevent tetraploidization during the cancer cell cycle.  相似文献   

12.
Tumor suppressor p53 is one of the most frequently mutated genes in cancer, with almost 50% of all types of cancer expressing a mutant form of p53. p53 transactivates the expression of its primary negative regulator, HDM2. HDM2 is a ubiquitin ligase, which initiates the proteasomal degradation of p53 following ubiquitination. Proteasome inhibitors, by targeting the ubiquitin proteasome pathway inhibit the degradation of the majority of cellular proteins including wild-type p53. In contrast, in this study we found that the protein expression of mutant p53 was suppressed following treatment with established or novel proteasome inhibitors. Furthermore, for the first time we demonstrated that Arsenic trioxide, which was previously shown to suppress mutant p53 protein level, exhibits proteasome inhibitory activity. Proteasome inhibitor-mediated suppression of mutant p53 was partially rescued by the knockdown of HDM2, suggesting that the stabilization of HDM2 by proteasome inhibitors might be responsible for mutant p53 suppression to some extent. This study suggests that suppression of mutant p53 is a general property of proteasome inhibitors and it provides additional rationale to use proteasome inhibitors for the treatment of tumors with mutant p53.  相似文献   

13.
Tetraploidy can constitute a metastable intermediate between normal diploidy and oncogenic aneuploidy. Here, we show that the absence of p53 is not only permissive for the survival but also for multipolar asymmetric divisions of tetraploid cells, which lead to the generation of aneuploid cells with a near‐to‐diploid chromosome content. Multipolar mitoses (which reduce the tetraploid genome to a sub‐tetraploid state) are more frequent when p53 is downregulated and the product of the Mos oncogene is upregulated. Mos inhibits the coalescence of supernumerary centrosomes that allow for normal bipolar mitoses of tetraploid cells. In the absence of p53, Mos knockdown prevents multipolar mitoses and exerts genome‐stabilizing effects. These results elucidate the mechanisms through which asymmetric cell division drives chromosomal instability in tetraploid cells.  相似文献   

14.
Modification of protein-protein interactions (PPIs) holds promise for novel rational drug design. Disrupting or modifying protein interactions offers new challenges in terms of chemical compound libraries and techniques for compound validation. As proteins interact with several partners in different allosteric conformation in a pathological and tissue-specific fashion, it is difficult to predict the in vivo effect of PPI acting compounds identified by in vitro screening assays. It is therefore desirable to develop techniques that rapidly allow cell-based validation of protein interacting compounds. The binding of the p53 tumor suppressor to the HDM2 E3 ubiquitin ligase is important for controlling p53 activity, and several compounds, such as Nutlin-3, have been designed to bind a hydrophobic pocket in the N-terminus of HDM2 to prevent the interaction with p53 to stabilize and activate downstream p53 pathways. We have used the p53-HDM2 interaction as a model system to explore the bioluminescence resonance energy transfer (BRET) technique for validating compounds that disrupt PPIs in living cells.  相似文献   

15.
The constitutive activation of the Janus kinase 2 (JAK2) and mutation of the p53 tumor suppressor are both detected in human cancer. We examined the potential regulation of JAK2 phosphorylation by wild-type (wt) p53 in human ovarian cancer cell lines, Caov-3 and MDAH2774, which harbor mutant form of p53 tumor suppressor gene and high levels of phosphorylated JAK2. The wt p53 gene was re-introduced into the cells using an adenovirus vector. In addition to wt p53, mutant p53 22/23, mutant p53-175, and NCV (negative control virus) were introduced into the cells in the control groups. Expression of wt p53, but not that of p53-175 mutant, diminished JAK2 tyrosine phosphorylation in MDAH2774 and Caov-3 cell lines. Expression of wt p53 or p53 22/23 mutant did not cause a reduction in the phosphorylation of unrelated protein kinases, ERK1 and ERK2 (ERK1/2). The inhibition of JAK2 tyrosine phosphorylation can be reversed by tyrosine phosphatase inhibitor, sodium orthovanadate. Protein tyrosine phosphatase 1-B levels increased with introduction of wt p53 and may be involved in the dephosphorylation of JAK2. These findings present a possible p53-dependent cellular process of modulating JAK2 tyrosine phosphorylation in ovarian cancer cell lines.  相似文献   

16.
17.
目的:探究Numb蛋白在三阴乳腺癌患者中的表达降低情况,及Numb蛋白在三阴乳腺癌中对抑癌因子p53蛋白水平的影响及调控机制,进一步研究Numb蛋白的降低与三阴乳腺癌发生发展的相关性,从而为缺乏有效治疗方法的三阴乳腺癌提供一个潜在的治疗新靶点。方法:40例三阴乳腺癌患者病理组织切片取自重庆医科大学临床病理诊断中心,采用免疫组化法检测Numb蛋白在三阴乳腺癌患者中的表达情况。MCF-10A细胞株和MDA-MB-231细胞株均为ATCC来源,采用qPCR和Western blot法检测对比Numb、HDM2、p53三者的转录水平和蛋白质水平在以上两个细胞株中差异。采用增强型绿色荧光蛋白(enhance green fluorescent protein,EGFP)质粒转染的方法在MDA-MB-231细胞中重表达Numb,采用q PCR和Western blot法验证Numb、HDM2、p53三者表达的变化。结果:转染NUMB-EGFP后MDA-MB-231细胞中Numb的mRNA和蛋白质水平均明显上调,HDM2无显著改变,p53在转录水平无明显变化,但在蛋白质水平显著升高。在231细胞中上调Numb蛋白可以在转录后水平调节p53水平,使p53蛋白随之显著升高。结论:Numb蛋白在三阴乳腺癌患者中表达降低的比列很高,为55%,且Numb蛋白在三阴乳腺癌细胞MDA-MB-231中可以调控抑癌因子p53蛋白水平,Numb蛋白水平与p53蛋白水平呈正相关。  相似文献   

18.
HDM2 and HDMX are two homologs essential for controlling p53 tumor suppressor activity under normal conditions. Both proteins bind different sites on the p53 N‐terminus, and while HDM2 has E3 ubiquitin ligase activity towards p53, HDMX does not. Nevertheless, HDMX is required for p53 polyubiquitination and degradation, but the underlying molecular mechanism remains unclear. Alone, HDMX and HDM2 interact via their respective C‐terminal RING domains but here we show that the presence of p53 induces an N‐terminal interface under normal cellular conditions. This results in an increase in HDM2‐mediated p53 polyubiquitination and degradation. The HDM2 inhibitor Nutlin‐3 binds the N‐terminal p53 binding pocket and is sufficient to induce the HDM2‐HDMX interaction, suggesting that the mechanism depends on allosteric changes that control the multiprotein complex formation. These results demonstrate an allosteric interchange between three different proteins (HDMX‐HDM2‐p53) and help to explain the molecular mechanisms of HDM2‐inhibitory drugs.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号