首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In fertile women, the endometrium undergoes regular cycles of tissue build-up and regression. It is likely that uterine stem cells are involved in this remarkable turn over. The main goal of our current investigations was to identify slow-cycling (quiescent) endometrial stem cells by means of a pulse-chase approach to selectively earmark, prospectively isolate, and characterize label-retaining cells (LRCs). To this aim, transgenic mice expressing histone2B-GFP (H2B-GFP) in a Tet-inducible fashion were administered doxycycline (pulse) which was thereafter withdrawn from the drinking water (chase). Over time, dividing cells progressively loose GFP signal whereas infrequently dividing cells retain H2B-GFP expression. We evaluated H2B-GFP retaining cells at different chase time points and identified long-term (LT; >12 weeks) LRCs. The LT-LRCs are negative for estrogen receptor-α and express low levels of progesterone receptors. LRCs sorted by FACS are able to form spheroids capable of self-renewal and differentiation. Upon serum stimulation spheroid cells are induced to differentiate and form glandular structures which express markers of mature Műllerian epithelial cells. Overall, the results indicate that quiescent cells located in the distal oviduct have stem-like properties and can differentiate into distinct cell lineages specific of endometrium, proximal and distal oviduct. Future lineage-tracing studies will elucidate the role played by these cells in homeostasis, tissue injury and cancer of the female reproductive tract in the mouse and eventually in man.  相似文献   

2.

Background

Endometrial stem/progenitor cells contribute to the cyclical regeneration of human endometrium throughout a woman''s reproductive life. Although the candidate cell populations have been extensively studied, no consensus exists regarding which endometrial population represents the stem/progenitor cell fraction in terms of in vivo stem cell activity. We have previously reported that human endometrial side population cells (ESP), but not endometrial main population cells (EMP), exhibit stem cell-like properties, including in vivo reconstitution of endometrium-like tissues when xenotransplanted into immunodeficient mice. The reconstitution efficiency, however, was low presumably because ESP cells alone could not provide a sufficient microenvironment (niche) to support their stem cell activity. The objective of this study was to establish a novel in vivo endometrial stem cell assay employing cell tracking and tissue reconstitution systems and to examine the stem cell properties of ESP through use of this assay.

Methodology/Principal Findings

ESP and EMP cells isolated from whole endometrial cells were infected with lentivirus to express tandem Tomato (TdTom), a red fluorescent protein. They were mixed with unlabeled whole endometrial cells and then transplanted under the kidney capsule of ovariectomized immunodeficient mice. These mice were treated with estradiol and progesterone for eight weeks and nephrectomized. All of the grafts reconstituted endometrium-like tissues under the kidney capsules. Immunofluorescence revealed that TdTom-positive cells were significantly more abundant in the glandular, stromal, and endothelial cells of the reconstituted endometrium in mice transplanted with TdTom-labeled ESP cells than those with TdTom-labeled EMP cells.

Conclusions/Significance

We have established a novel in vivo endometrial stem cell assay in which multi-potential differentiation can be identified through cell tracking during in vivo endometrial tissue reconstitution. Using this assay, we demonstrated that ESP cells differentiated into multiple endometrial lineages in the niche provided by whole endometrial cells, indicating that ESP cells are genuine endometrial stem/progenitor cells.  相似文献   

3.
Endometrium is the inner lining of the uterus which is composed of epithelial and stromal tissue compartments enclosed by the two smooth muscle layers of the myometrium. In women, much of the endometrium is shed and regenerated each month during the menstrual cycle. Endometrial regeneration also occurs after parturition. The cellular mechanisms that regulate endometrial regeneration are still poorly understood. Using genetic fate-mapping in the mouse, we found that the epithelial compartment of the endometrium maintains its epithelial identity during the estrous cycle and postpartum regeneration. However, whereas the stromal compartment maintains its identity during homeostatic cycling, after parturition a subset of stromal cells differentiates into epithelium that is subsequently maintained. These findings identify potential progenitor cells within the endometrial stromal compartment that produce long-term epithelial tissue during postpartum endometrial regeneration.  相似文献   

4.
The submandibular gland (SMG) is a tissue that can be regenerated in a tissue injury model and that has adult stem cells capable of self-renewal and differentiation into functional cells. We have analyzed the localization of label-retaining cells (LRCs), which are putative progenitor cells, by using the BrdU-labeling method. 5-Bromo-2′-deoxyuridine (BrdU) injection followed by a long chasing period permitted the identification of LRCs based on the slow-cycling characteristic. In order to confirm the accurate localization of LRCs, BrdU and SMG-specific markers, including aquaporin5, cytokeratin, and smooth muscle actin, were examined by double-immunofluoresence staining. We found that LRCs were distributed in the acinus, duct, myoepithelium, and connective tissue. Moreover, ABCG2 (a known stem cell marker) was used for the characterization of LRCs and the localization of cells as putative stem/progenitor cells. ABCG2-expressing cells were distributed in various regions of the SMG but did not co-localize with LRCs. We suggest that putative progenitor cells exist in various regions of the SMG and have diverse capacities to differentiate into specific cells. Yeun-Jung Kim and Hyuk-Jae Kwon contributed equally to this work. This work was supported by Korea Research Foundation Grant (KRF-2006–013-E00143).  相似文献   

5.
The human endometrium is a highly dynamic tissue with the ability to cyclically regenerate during the reproductive life. Endometrial mesenchymal stem-like cells (eMSCs) located throughout the endometrium have shown to functionally contribute to endometrial regeneration. In this study we examine whether the menstrual cycle stage and the location in the endometrial bilayer (superficial and deep portions of the endometrium) has an effect on stem cell activities of eMSCs (CD140b+CD146+ cells). Here we show the percentage and clonogenic ability of eMSCs were constant in the various stages of the menstrual cycle (menstrual, proliferative and secretory). However, eMSCs from the menstrual endometrium underwent significantly more rounds of self-renewal and enabled a greater total cell output than those from the secretory phase. Significantly more eMSCs were detected in the deeper portion of the endometrium compared to the superficial layer but their clonogenic and self-renewal activities remained similar. Our findings suggest that eMSCs are activated in the menstrual phase for the cyclical regeneration of the endometrium.  相似文献   

6.
Recently, we demonstrated that a pulse of BrdU given to prenatal animals reveals the existence of slow-cycling long-term label-retaining cells (LRCs), putative adult stem or progenitor cells, which reside in the dental pulp. This study aims to clarify responses of LRCs to allogenic tooth transplantation into mouse maxilla using prenatal BrdU-labeling, in situ hybridization for osteopontin and periostin, and immunohistochemistry for BrdU, nestin, and osteopontin. The upper-right first molars were allografted in the original socket between BrdU-labeled and non-labeled mice or between GFP transgenic and wild-type mice. Tooth transplantation caused degeneration of the odontoblast layer, resulting in the disappearance of nestin-positive reactions in the dental pulp. On postoperative days 5–7, tertiary dentin formation commenced next to the preexisting dentin where nestin-positive odontoblast-like cells were arranged in the successful cases. In BrdU-labeled transplanted teeth, dense LRCs were maintained in the center of the dental pulp beneath the odontoblast-like cells including LRCs, whereas LRCs disappeared in the area surrounding the bone-like tissue. In contrast, LRCs were not recognized in the pulp chamber of non-labeled transplants through the experimental period. Tooth transplantation using GFP mice demonstrated that the donor cells constituted the dental pulp of the transplant except for endothelial cells and some migrated cells, and the periodontal tissue was replaced by host-derived cells except for epithelial cell rests of Malassez. These results suggest that the maintenance of BrdU label-retaining dental pulp cells play a role in the regeneration of odontoblast-like cells in the process of pulpal healing following tooth transplantation.  相似文献   

7.
The human endometrium is incredibly dynamic, undergoing monthly cycles of growth and regression during a woman's reproductive life. Endometrial repair at the cessation of menstruation is critical for reestablishment of a functional endometrium receptive for embryo implantation; however, little is understood about the mechanisms behind this rapid and highly efficient process. This study utilized a functional mouse model of endometrial breakdown and repair to assess changes in endometrial vasculature that accompany these dynamic processes. Given that adult endometrial stem/progenitor cells identified in human and mouse endometrium are likely contributors to the remarkable regenerative capacity of endometrium, we also assessed label-retaining cells (LRC) as candidate stromal stem/progenitor cells and examined their relationship with endometrial vasculature. Newborn mouse pups were pulse-labeled with bromodeoxyuridine (BrdU) and chased for 5 wk before decidualization, endometrial breakdown, and repair were induced by hormonal manipulation. Mean vessel density did not change significantly throughout breakdown and repair; however, significantly elevated endothelial cell proliferation was observed in decidual tissue. Stromal LRC were identified throughout breakdown and repair, with significantly fewer observed during endometrial repair than before decidualization. A significantly higher percentage of LRC were associated with vasculature during repair than before decidualization, and a proportion were undergoing proliferation, indicative of their functional capacity. This study is the first to examine the endometrial vasculature and candidate stromal stem/progenitor cells in a functional mouse model of endometrial breakdown and repair and provides functional evidence suggesting that perivascular LRC may contribute to endometrial stromal expansion during the extensive remodeling associated with this process.  相似文献   

8.
The endometrium is central to mammalian fertility. The endometrial stromal cells are very dynamic, growing and differentiating throughout the estrous cycle and pregnancy. In humans, stromal cells appear to have progenitor or stem cell capabilities and the cells can even differentiate into bone. It is not clear whether bovine endometrial stromal cells exhibit a similar phenotypic plasticity. So, the present study tested the hypothesis that bovine endometrial stromal cells could be differentiated along an osteogenic lineage. Pure populations of bovine stromal cells were isolated from the endometrium. The endometrial stromal cell phenotype was confirmed by morphology, prostaglandin secretion, and susceptibility to viral infection. However, cultivation of the cells in standard endometrial cell culture medium lead to a mesenchymal phenotype similar to that of bovine bone marrow cells. Furthermore, the endometrial stromal cells developed signs of osteogenesis, such as alizarin positive nodules. When the stromal cells were cultured in a specific osteogenic medium the cells rapidly developed the characteristics of mineralized bone. In conclusion, the present study has identified that stromal cells from the bovine endometrium show a capability for phenotype plasticity similar to mesenchymal progenitor cells. These observations pave the way for further investigation of the mechanisms of stroma cell differentiation in the bovine reproductive tract.  相似文献   

9.
Pancreatic stem cells (PSCs) may play an important role in maintaining and repairing pancreatic tissues. However, both the existence and localization of PSCs in adult mammalian pancreas still remain elusive. In order to locate the potential pancreatic progenitor/stem cells, we used the tracing label-retaining cells (LRCs) method and identified slow-cycling cells in mouse pancreas. Characterization of the LRCs revealed that the differentiation marker-negative LRCs were located not only within and around the islets but also around the acini and ducts. About 30% of the LRCs around the acini and ducts expressed c-Met, which is a putative pancreatic progenitor/stem cell marker. Moreover, the LRCs around the acini could be activated to form duct-like structures in response to pancreatic damage, and the involvement of these LRCs in the neogenesis of islets and focal areas could also be observed in acini. Our data suggest that the LRCs located around the acini and ducts may represent potential pancreatic progenitor/stem cells, and characterization of these cells may aid in further identification of the specific markers of pancreatic progenitor/stem cells.  相似文献   

10.

Background

The human endometrium undergoes cyclical regeneration throughout a woman''s reproductive life. Ectopic implantation of endometrial cells through retrograde menstruation gives rise to endometriotic lesions which affect approximately 10% of reproductive-aged women. The high regenerative capacity of the human endometrium at eutopic and ectopic sites suggests the existence of stem/progenitor cells and a unique angiogenic system. The objective of this study was to isolate and characterize putative endometrial stem/progenitor cells and to address how they might be involved in the physiology of endometrium.

Methodology/Principal Findings

We found that approximately 2% of the total cells obtained from human endometrium displayed a side population (SP) phenotype, as determined by flow cytometric analysis of Hoechst-stained cells. The endometrial SP (ESP) cells exhibited preferential expression of several endothelial cell markers compared to endometrial main population (EMP) cells. A medium specific for endothelial cell culture enabled ESP cells to proliferate and differentiate into various types of endometrial cells, including glandular epithelial, stromal and endothelial cells in vitro, whereas in the same medium, EMP cells differentiated only into stromal cells. Furthermore, ESP cells, but not EMP cells, reconstituted organized endometrial tissue with well-delineated glandular structures when transplanted under the kidney capsule of severely immunodeficient mice. Notably, ESP cells generated endothelial cells that migrated into the mouse kidney parenchyma and formed mature blood vessels. This potential for in vivo angiogenesis and endometrial cell regeneration was more prominent in the ESP fraction than in the EMP fraction, as the latter mainly gave rise to stromal cells in vivo.

Conclusions/Significance

These results indicate that putative endometrial stem cells are highly enriched in the ESP cells. These unique characteristics suggest that ESP cells might drive physiological endometrial regeneration and be involved in the pathogenesis of endometriosis.  相似文献   

11.
During reproductive life, the human endometrium undergoes around 480 cycles of growth, breakdown and regeneration should pregnancy not be achieved. This outstanding regenerative capacity is the basis for women''s cycling and its dysfunction may be involved in the etiology of pathological disorders. Therefore, the human endometrial tissue must rely on a remarkable endometrial somatic stem cells (SSC) population. Here we explore the hypothesis that human endometrial side population (SP) cells correspond to somatic stem cells. We isolated, identified and characterized the SP corresponding to the stromal and epithelial compartments using endometrial SP genes signature, immunophenotyping and characteristic telomerase pattern. We analyzed the clonogenic activity of SP cells under hypoxic conditions and the differentiation capacity in vitro to adipogenic and osteogenic lineages. Finally, we demonstrated the functional capability of endometrial SP to develop human endometrium after subcutaneous injection in NOD-SCID mice. Briefly, SP cells of human endometrium from epithelial and stromal compartments display genotypic, phenotypic and functional features of SSC.  相似文献   

12.
A previous study indicated rabbit endometrial relaxin synthesis is stimulated by blastocyst (Lee VH, Fields PA, Biol Reprod 1990; 40:737-745). To evaluate this hypothesis, unilateral oviduct ligations were placed (A) at the oviduct isthmus on Day 1 post-copulation and (B), in a separate group of rabbits, at the infundibulum before copulation. Blastocysts migrate into and implant in the uterine horn contralateral to the ligated oviduct only (conceptus-bearing uterus). The uterine horn ipsilateral to the ligated oviduct will be referred to as the non-conceptus-bearing uterus. Uteri and ovaries were removed on Days 4-28 of pregnancy and were evaluated for relaxin using guinea pig anti-porcine relaxin serum and avidin-biotin light microscopy immunohistochemistry. Results were identical for both models. Blastocysts first attach to the antimesometrial uterine surface by Day 7 post-copulation. Implantation on the mesometrial surface occurs on Days 8-11. Relaxin was observed in antimesometrial endometrial glands of both conceptus and non-conceptus-bearing uteri on Days 4-7 of pregnancy. Beyond Day 7, relaxin was observed in antimesometrial and mesometrial endometrial glandular and luminal epithelial cells at implantation sites of the conceptus-bearing uterus only. Relaxin was not found between implantation sites. Endometrial epithelial cells of the non-conceptus-bearing uterus were regressing by Day 9. These data indicate a conceptus-mediated maintenance of endometrial epithelial cells. Furthermore, the data suggest a paracrine maintenance of epithelial cell integrity and relaxin synthesis since these parameters are preserved only in the conceptus-bearing uterus. Cell-cell communication between conceptus and endometrium appears to be specific since endometrium between implantation sites does not contain relaxin. Uterine tissue from pseudopregnant rabbits (Days 1-16) was evaluated. Relaxin was observed in the antimesometrial glands on Day 7 only. Like the endometrium in the ligation model, endometrial epithelial cells of the pseudopregnant rabbit uterus were regressing by Day 9. These results indicate that pregnancy is not required for, but may enhance, relaxin synthesis. In addition, endometrial epithelial cells regress in the absence of pregnancy. Regression of endometrial epithelial cells on Day 9 suggests that maternal recognition of pregnancy occurs during the preimplantation period (Days 4-8).  相似文献   

13.
We have proposed the new hypothesis that dental pulp stem cells play crucial roles in the pulpal healing process following exogenous stimuli in cooperation with progenitors. This study aimed to establish an in vitro culture system for evaluating dentin–pulp complex regeneration with special reference to the differentiation capacity of slow-cycling long-term label-retaining cells (LRCs). Three intraperitoneal injections of BrdU were given to pregnant ICR mice to map LRCs in the mature tissues of born animals. The upper bilateral first molars of 3-week-old mice were extracted and divided into two pieces and cultured for 0, 1, 3, 5 and 7 days using the Trowel’s method. We succeeded in establishing an in vitro culture system for evaluating dentin–pulp complex regeneration, where most odontoblasts were occasionally degenerated and lost nestin immunoreactivity because of the separation of cell bodies from cellular processes in the dentin matrix by the beginning of in vitro culture. Numerous dense LRCs mainly resided in the center of the dental pulp associating with blood vessels throughout the experimental periods. On postoperative days 1–3, the periphery of the pulp tissue including the odontoblast layer showed degenerative features. By Day 7, nestin-positive odontoblast-like cells were arranged along the pulp–dentin border and dense LRCs were committed in the odontoblast-like cells. These results suggest that dense LRCs in the center of the dental pulp associating with blood vessels were supposed to be dental pulp stem/progenitor cells possessing regenerative capacity for forming newly differentiated odontoblast-like cells.  相似文献   

14.
Adult stem cells can be identified by label-retaining cell (LRC) approach based on their ability to retain nucleoside analog, such as bromodeoxyuridine (BrdU). We hypothesized that mouse nasopharynx contains a small population of epithelial stem/progenitor cells that may be detected by the LRC technique. To identify LRCs in mice nasopharyngeal epithelia, neonatal mice were intraperitoneally injected with BrdU twice daily for 3 consecutive days. After an 8-week chase, long-term BrdU-labeled LRCs (∼2% of cells) were detected in the adult mice nasopharyngeal epithelia by immunostaining with BrdU antibody and some of LRCs (∼12% of cells) were found to be recruited into the S phase of cell cycle with an additional radioactive thymidine-labeling technique, indicating that the stem cells also divide, most likely asymmetrically. To further investigate whether the LRCs existed in human nasopharyngeal carcinoma (NPC) tissues, three NPC cell lines (5-8F, 6-10B and TMNE) were labeled with BrdU in vitro and then individually engrafted into the back of nude mice, which developed tumors. Again, label-retaining stem cells were found in all the three kinds of NPC xenograft tumors (∼0.3% of cells), around 16% of which were also labeled with radioactive thymidine. Thus, this study has demonstrated for the first time the presence of epithelial LRCs in mouse nasopharyngx and human NPC tissues and these stem-like LRCs are not completely quiescent, as they will be recruited into the cell cycle to participate physiological or pathological process at any moment. More importantly, our data showed that NPC also contained stem cells, which are most likely the cause for NPC spread, metastasis and recurrence.  相似文献   

15.

Background

Based on evidence from several other tissues, cartilage stem/progenitor cells in the auricular cartilage presumably contribute to tissue development or homeostasis of the auricle. However, no definitive studies have identified or characterized a stem/progenitor population in mice auricle.

Methodology/Principal Findings

The 5-bromo-2′-deoxyuridine (BrdU) label-retaining technique was used to label dividing cells in fetal mice. Observations one year following the labeling revealed that label-retaining cells (LRCs) were present specifically in auricular perichondrium at a rate of 0.08±0.06%, but LRCs were not present in chondrium. Furthermore, LRCs were successfully isolated and cultivated from auricular cartilage. Immunocytochemical analyses showed that LRCs express CD44 and integrin-α5. These LRCs, putative stem/progenitor cells, possess clonogenicity and chondrogenic capability in vitro.

Conclusions/Significance

We have identified a population of putative cartilage stem/progenitor cells in the auricular perichondrium of mice. Further characterization and utilization of the cell population should improve our understanding of basic cartilage biology and lead to advances in cartilage tissue engineering and novel therapeutic strategies for patients with craniofacial defects, including long-term tissue restoration.  相似文献   

16.
The tammar, Macropus eugenii, is a monovular macropodid marsupial which has a post-partum oestrus and an 11 month embryonic diapause. Progesterone and oestradiol cytosol receptors were measured by Scatchard analyses and single point analysis in the lateral vagina, endometrium and myometrium of the gravid and contralateral non-gravid uterus throughout pregnancy, immediately after parturition and during seasonal reproductive quiescence. In endometrial tissues, both progesterone and oestradiol receptors doubled in concentration in both gravid and non-gravid uteri between day 0 and day 5 of pregnancy, coinciding with previously described peak values in peripheral plasma progesterone and oestrogen. Receptor concentrations in endometrial tissue during seasonal quiescence were not significantly different from those immediately after reactivation. After day 12 of pregnancy, downregulation of both progesterone and oestradiol cytosolic receptors occurred concomitant with the increase in progesterone in the peripheral plasma. However, there was a unilateral increase in oestradiol receptor concentrations in endometrium obtained from the non-gravid uterus between day 25 of the 26.5 day gestation and immediately after parturition. Myometrial receptor concentrations mirrored those of the endometrium but were lower. Concentrations of progesterone receptor in the lateral vaginae were at the lower limit of detection, while the oestradiol cytosol receptor concentrations were even lower in this tissue. Thus, the steroid receptor concentrations provide another example of local unilateral endocrine responses in the reproductive tract of the tammar. These results also indicate that the downregulation of progesterone and oestradiol receptors that occurs in both uteri in mid- and late-pregnancy is selectively and locally reversed before parturition in the non-gravid endometrium in response to the local effects of follicular oestradiol from the ipsilateral ovary.  相似文献   

17.
18.
Mammary epithelium can functionally regenerate upon transplantation. This renewal capacity has been classically ascribed to the function of a multipotent mammary gland stem cell population, which has been hypothesized to be a primary target in the etiology of breast cancer. Several complementary approaches were employed in this study to identify and enrich mammary epithelial cells that retain stem cell characteristics. Using long-term BrdU labeling, a population of label retaining cells (LRCs) that lack expression of differentiation markers has been identified. LRCs isolated from mammary primary cultures were enriched for stem cell antigen-1 (Sca-1) and Hoechst dye-effluxing "side population" properties. Sca-1(pos) cells in the mammary gland were localized to the luminal epithelia by using Sca-1(+/GFP) mice, were progesterone receptor-negative, and did not bind peanut lectin. Finally, the Sca-1(pos) population is enriched for functional stem/progenitor cells, as demonstrated by its increased regenerative potential compared with Sca-1(neg) cells when transplanted into the cleared mammary fat pads of host mice.  相似文献   

19.
《Reproductive biology》2021,21(4):100564
Endometrial regeneration is a dynamic process that is not well understood. The destruction of the endometrium with the formation of intrauterine adhesions is known as Asherman’s syndrome. The lesions range from minor to severe adhesions and their impact on pregnancy is well documented. Operative hysteroscopy is the mainstay of diagnosis and treatment of intrauterine adhesions. Nevertheless, the recurrence rates remain high. It was recorded that low-level laser therapy in low doses has a stimulatory effect on different tissues while the high dose produces a suppressive effect. Organoid is a three-dimensional assembly that displays architectures and functionalities similar to in vivo organs that are being developed from human or animal stem cells or organ-specific progenitors through a self-organization process. Our prospective was to study the effect of Low-Level Laser Therapy (LLLT) on mouse epithelial endometrial organoids regarding cell proliferation and endometrial regeneration as a new modality of treatment. An in vitro clinical trial to generate mouse epithelial organoid model and testing LLLT using He:Ne 632.8 nm device on organoids proliferation, function, and their response to ovarian hormones was performed. Trying endometrial regeneration by culturing organoids with decellularized uterine matrix (DUM) and studying the LLLT effect on the regeneration process. LLLT produced a proliferative effect on the epithelial mouse organoids confirmed by Ki67 and PCNA IHC. The organoids could regenerate the epithelial layer of the endometrium in vitro on DUM and LLLT could help in this process. In conclusion, organoids whether control or bio-stimulated proved a new modality to regenerate the endometrium.  相似文献   

20.
Human dental pulp contains adult stem cells. Our recent study demonstrated the localization of putative dental pulp stem/progenitor cells in the rat developing molar by chasing 5-bromo-2’-deoxyuridine (BrdU)-labeling. However, there are no available data on the localization of putative dental pulp stem/progenitor cells in the mouse molar. This study focuses on the mapping of putative dental pulp stem/progenitor cells in addition to the relationship between cell proliferation and differentiation in the developing molar using BrdU-labeling. Numerous proliferating cells appeared in the tooth germ and the most active cell proliferation in the mesenchymal cells occurred in the prenatal stages, especially on embryonic Day 15 (E15). Cell proliferation in the pulp tissue dramatically decreased in number by postnatal Day 3 (P3) when nestin-positive odontoblasts were arranged in the cusped areas and disappeared after postnatal Week 1 (P1W). Root dental papilla included numerous proliferating cells during P5 to P2W. Three to four intraperitoneal injections of BrdU were given to pregnant ICR mice and revealed slow-cycling long-term label-retaining cells (LRCs) in the mature tissues of postnatal animals. Numerous dense LRCs postnatally decreased in number and reached a plateau after P1W when they mainly resided in the center of the dental pulp, associating with blood vessels. Furthermore, numerous dense LRCs co-expressed mesenchymal stem cell markers such as STRO-1 and CD146. Thus, dense LRCs in mature pulp tissues were believed to be dental pulp stem/progenitor cells harboring in the perivascular niche surrounding the endothelium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号