首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High-molecular-weight genomic DNA isolated from a human cutaneous squamous cell carcinoma (AS) was assayed for its ability to induce tumorigenic transformation of NIH 3T3 cells. Subcutaneous injection of NIH 3T3 cells cotransfected with DNAs from AS tumor and pSV2-neo plasmid not only induced tumors at the site of injection, but also metastasized spontaneously to the lungs in 100% of nude mice injected. DNA isolated from a representative primary tumor and a metastasis was again used in a second round of transfection. Injection of secondary transfectants into nude mice again resulted in induction of both subcutaneous tumors and spontaneous long metastases. Southern blot hybridization with ras-specific probes revealed that DNA from both primary tumors and metastases induced by AS tumor DNA contained highly amplified Ha-ras oncogene. Furthermore, DNAs from secondary tumors and metastases induced by DNA from a primary tumor and a metastasis also contained similar highly amplified Ha-ras oncogene. These results suggest that the amplified Ha-ras oncogene may be responsible for induction of both tumorigenic and metastatic phenotypes in NIH 3T3 cells transfected with DNA from AS tumor.  相似文献   

2.
Recent studies have demonstrated novel alterations of microsatellite DNA in tumor tissue. The alterations, termed microsatellite instability or replication error phenotype, have now been observed in tumors from patients with hereditary nonpolyposis colorectal cancer (HNPCC), the Muir-Torre syndrome (MTS) and in an increasing number of sporadic tumors. These observations, along with the use of genetic linkage analysis, have led to the identification of at least four genetic susceptibility loci for HNPCC, hMSH2, hMLH1, hPMS1 and hPMS2, each of which are involved in DNA mismatch repair. For those tumors demonstrating microsatellite instability, several different phenotypes may exist, the significance of which is currently unknown. Defective DNA mismatch repair may have important implications for the mechanism of tumorigenesis and the clinical behavior of tumors.  相似文献   

3.
A physical map around the WAGR complex on the short arm of chromosome 11   总被引:6,自引:0,他引:6  
M Gessler  G A Bruns 《Genomics》1989,5(1):43-55
A long-range restriction map of part of the short arm of chromosome 11 including the WAGR region has been constructed using pulsed-field gel electrophoresis and a number of infrequently cutting restriction enzymes. A total of 15.4 Mbp has been mapped in detail, extending from proximal 11p14 to the distal part of 11p12. The map localizes 35 different DNA probes and reveals at least nine areas with features characteristic of HTF islands, some of which may be candidates for the different loci underlying the phenotype of the WAGR syndrome. This map will furthermore allow screening of DNA from individuals with WAGR-related phenotypes and from Wilms tumors for associated chromosomal rearrangements.  相似文献   

4.
Nuclear DNA but not mtDNA controls tumor phenotypes in mouse cells   总被引:3,自引:0,他引:3  
Recent studies showed high frequencies of homoplasmic mtDNA mutations in various human tumor types, suggesting that the mutated mtDNA haplotypes somehow contribute to expression of tumor phenotypes. We directly addressed this issue by isolating mouse mtDNA-less (rho(0)) cells for complete mtDNA replacement between normal cells and their carcinogen-induced transformants, and examined the effect of the mtDNA replacement on expression of tumorigenicity, a phenotype forming tumors in nude mice. The results showed that genome chimera cells carrying nuclear DNA from tumor cells and mtDNA from normal cells expressed tumorigenicity, whereas those carrying nuclear DNA from normal cells and mtDNA from tumor cells did not. These observations provided direct evidence that nuclear DNA, but not mtDNA, is responsible for carcinogen-induced malignant transformation, although it remains possible that mtDNA mutations and resultant respiration defects may influence the degree of malignancy, such as invasive or metastatic properties.  相似文献   

5.
D E Ott  J Keller  K Sill    A Rein 《Journal of virology》1992,66(10):6107-6116
Murine leukemia viruses (MuLVs) induce leukemias and lymphomas in mice. We have used fluorescence-activated cell sorter analysis to determine the hematopoietic phenotypes of tumor cells induced by a number of MuLVs. Tumor cells induced by ecotropic Moloney, amphotropic 4070A, and 10A1 MuLVs and by two chimeric MuLVs, Mo(4070A) and Mo(10A1), were examined with antibodies to 13 lineage-specific cell surface markers found on myeloid cell, T-cell, and B-cell lineages. The chimeric Mo(4070A) and Mo(10A1) MuLVs, consisting of Moloney MuLV with the carboxy half of the Pol region and nearly all of the Env region of 4070A and 10A1, respectively, were constructed to examine the possible influence of these sequences on Moloney MuLV-induced tumor cell phenotypes. In some instances, these phenotypic analyses were supplemented by Southern blot analysis for lymphoid cell-specific genomic DNA rearrangements at the immunoglobulin heavy-chain, the T-cell receptor gamma, and the T-cell receptor beta loci. The results of our analysis showed that Moloney MuLV, 4070A, Mo(4070A), and Mo(10A1) induced mostly T-cell tumors. Moloney MuLV and Mo(4070A) induced a wide variety of T-cell phenotypes, ranging from immature to mature phenotypes, while 4070A induced mostly prothymocyte and double-negative (CD4- CD8-) T-cell tumors. The tumor phenotypes obtained with 10A1 and Mo(10A1) were each less variable than those obtained with the other MuLVs tested. 10A1 uniformly induced a tumor consisting of lineage marker-negative cells that lack lymphoid cell-specific DNA rearrangements and histologically appear to be early undifferentiated erythroid cell-like precursors. The Mo(10A1) chimera consistently induced an intermediate T-cell tumor. The chimeric constructions demonstrated that while 4070A 3' pol and env sequences apparently did not influence the observed tumor cell phenotypes, the 10A1 half of pol and env had a strong effect on the phenotypes induced by Mo(10A1) that resulted in a phenotypic consistency not seen with other viruses. This result implicates 10A1 env in an active role in the tumorigenic process.  相似文献   

6.
Genetic instability in human mismatch repair deficient cancers   总被引:7,自引:0,他引:7  
Cancers showing microsatellite instability (MSI-H) are frequent tumors characterized by inactivating alterations of mismatch repair (MMR) genes that lead to an incapacity to recognize and repair errors that occur during DNA replication. These cancers can be inherited as in the human non-polyposis colorectal cancer syndrome, or can occur sporadically in 10-15% of colorectal, gastric and endometrial cancers. MSI-H tumors have different clinicopathological features compared to cancers without this phenotype, termed MSS, and the repertoire of genetic events involved in tumoral progression of both phenotypes is thought to be different. In MSI-H tumors, most of the genetic changes occur at both non-coding and coding microsatellites that are particularly prone to errors during replication due to their repetitive sequence. This mechanism appears to be the main "genetic pathway" by which functional changes with putative oncogenic effects are accumulated in these tumors.  相似文献   

7.
Copy number alteration (CNA) profiling of human tumors has revealed recurrent patterns of DNA amplifications and deletions across diverse cancer types. These patterns are suggestive of conserved selection pressures during tumor evolution but cannot be fully explained by known oncogenes and tumor suppressor genes. Using a pan‐cancer analysis of CNA data from patient tumors and experimental systems, here we show that principal component analysis‐defined CNA signatures are predictive of glycolytic phenotypes, including 18F‐fluorodeoxy‐glucose (FDG) avidity of patient tumors, and increased proliferation. The primary CNA signature is enriched for p53 mutations and is associated with glycolysis through coordinate amplification of glycolytic genes and other cancer‐linked metabolic enzymes. A pan‐cancer and cross‐species comparison of CNAs highlighted 26 consistently altered DNA regions, containing 11 enzymes in the glycolysis pathway in addition to known cancer‐driving genes. Furthermore, exogenous expression of hexokinase and enolase enzymes in an experimental immortalization system altered the subsequent copy number status of the corresponding endogenous loci, supporting the hypothesis that these metabolic genes act as drivers within the conserved CNA amplification regions. Taken together, these results demonstrate that metabolic stress acts as a selective pressure underlying the recurrent CNAs observed in human tumors, and further cast genomic instability as an enabling event in tumorigenesis and metabolic evolution.  相似文献   

8.
9.

Background

The possible role of viruses in breast cancer etiology remains an unresolved question. We hypothesized that if some viruses are involved, it may be in a subgroup of breast cancers only. Epidemiological arguments drove our interest in breast cancer subgroups that are more frequent in Africa, namely inflammatory breast cancer (IBC) and triple-negative breast cancer. We tested whether viral prevalence was significantly higher in these subgroups.

Materials and Methods

One hundred fifty-five paraffin-embedded malignant breast tumors were randomly selected at the pathology laboratory of the University Hospital of Annaba (Algeria) to include one third of IBC and two thirds of non-IBC. They were tested for the presence of DNA from 61 viral agents (46 human papillomaviruses, 10 polyomaviruses, and 5 herpesviruses) using type-specific multiplex genotyping assays, which combine multiplex PCR and bead-based Luminex technology.

Results

Viral DNA was found in 22 (17.9%) of 123 tumors. The most prevalent viruses were EBV1 and HPV16. IBC tumors carried significantly more viruses (any type) than non-IBC tumors (30% vs. 13%, p<0.04). Similarly, triple-negative tumors displayed higher virus-positivity than non-triple-negative tumors (44% vs. 14%, p<0.009).

Conclusions

Our results suggest an association between the presence of viral DNA and aggressive breast cancer phenotypes (IBC, triple-negative). While preliminary, they underline the importance of focusing on subgroups when studying viral etiology in breast cancer. Further studies on viruses in breast cancer should be conducted in much larger samples to confirm these initial findings.  相似文献   

10.
11.
A mouse retrovirus containing the c-myc oncogene was found to induce tumors of mononuclear phagocytic cells in vivo. All tumors expressed the c-myc retroviral gene but not the endogenous c-myc gene (with one exception), and virtually all tumors were clonal with a unique proviral integration. This observation, coupled with a lag time in tumor formation, suggests that a second event, in addition to c-myc proviral integration, is necessary for the generation of neoplastic cells in vivo. All of the tumor cells expressed high levels of mRNA for both the putative colony-stimulating factor 1 (CSF-1) receptor (c-fms proto-oncogene product), as well as the c-fos proto-oncogene. Although all of the tumor cells proliferated in culture without the addition of exogenous CSF-1, which is required for the proliferation of primary macrophages partially transformed by the same c-myc retrovirus, several phenotypes were observed with respect to the expression of CSF-1 and granulocyte-macrophage CSF and to their growth factor responsiveness. The proliferation of one tumor, which secreted high levels of CSF-1, was blocked by specific anti-CSF-1 serum. This tumor was found to express altered CSF-1 mRNA and to have a DNA rearrangement at the CSF-1 locus. In this particular case, the data indicate that a CSF-1 gene rearrangement was the secondary event in development of the tumor. The pleiotropy of phenotypes among the other tumors indicated that there are a variety of other mechanisms for such secondary events which can be investigated with this system.  相似文献   

12.
Point mutations of ras oncogenes are an early event in thyroid tumorigenesis   总被引:13,自引:0,他引:13  
Identifying the nature of the genetic mutations in thyroid neoplasms and their prevalence in the various tumor phenotypes is critical to understanding their pathogenesis. Mutational activation of ras oncogenes in human tumors occurs predominantly through point mutations in two functional regions of the molecules, codons 12, 13 (GTP-binding domain) or codon 61 (GTPase domain). We examined the prevalence of point mutations in codons 12, 13, and 61 of the oncogenes K-ras, N-ras, and H-ras in benign and malignant human thyroid tumors by hybridization of PCR-amplified tumor DNA with synthetic oligodeoxynucleotide probes. None of the eight normal thyroid tissues harbored point mutations. Four of nineteen nodules from multinodular goiters (21%), 6/24 microfollicular adenomas (25%), 3/14 papillary carcinomas (21%), and 0/3 follicular carcinomas contained ras point mutations. The predominant mutation was a valine for glycine substitution in codon 12 of H-ras. None of the multinodular goiter tumors known to be polyclonal (and thus due to hyperplasia) had point mutations, whereas one of the two monoclonal adenomas arising in nodular glands contained in H-ras codon 12 valine substitution, which was confirmed by sequencing the tumor DNA. These data show that ras activation is about equally prevalent in benign and malignant thyroid neoplasms, and thus may be an early event in the tumorigenic process.  相似文献   

13.
Glycosylation is one of the most fundamental posttranslational modifications in cellular biology and has been shown to be epigenetically regulated. Understanding this process is important as epigenetic therapies such as those using DNA methyltransferase inhibitors are undergoing clinical trials for the treatment of ovarian and breast cancer. Previous work has demonstrated that altered glycosylation patterns are associated with aggressive disease in women presenting with breast and ovarian cancer. Moreover, the tumor microenvironment of hypoxia results in globally altered DNA methylation and is associated with aggressive cancer phenotypes and chemo-resistance, a feature integral to many cancers. There is sparse knowledge on the impact of these therapies on glycosylation. Moreover, little is known about the efficacy of DNA methyltransferase inhibitors in hypoxic tumors. In this review, we interrogate the impact that hypoxia and epigenetic regulation has on cancer cell glycosylation in relation to resultant tumor cell aggressiveness and chemo-resistance.  相似文献   

14.
Major histocompatibility complex (MHC) class I loss or downregulation in cancer cells is a major immune escape route used by a large variety of human tumors to evade anti-tumor immune responses mediated by cytotoxic T lymphocytes. Multiple mechanisms are responsible for such HLA class I alterations. However, the precise frequency of these molecular defects has not been clearly determined in tumors derived from specific tissues. To analyze such defects we aim to define the major HLA class I-altered phenotypes in different tumor types. In this paper we report on HLA class I expression in 70 laryngeal carcinomas. We used immunohistological techniques with a highly selective panel of anti-HLA monoclonal antibodies (mAb), and polymerase chain reaction (PCR) microsatellite amplification of previously selected microsatellite markers (STR) located in chromosome 6 and 15. DNA was obtained from microdissected tumor tissues and surrounding stroma to define the loss of heterozygosity (LOH) associated with chromosome 6p21. Our results showed that LOH in chromosome 6 produced HLA haplotype loss (phenotype II) in 36% of the tumors. In addition, HLA class I total loss (phenotype I) was found in 11%; HLA A or B locus downregulation (phenotype III) was detected in 20%; and HLA class I allelic loss (phenotype IV) in 10% of all cases. We sometimes observed two or more associated mechanisms in the same HLA-altered phenotype, such as LOH and HLA total loss in phenotype I. In only 23% of tumors it was not possible to identify any HLA class I alteration. We conclude that the combination of immunohistological techniques and molecular analysis of tumor DNA obtained from microdissected tumor tissues provides a means for the first time of determining the actual frequency of the major HLA class I-altered phenotypes in laryngeal carcinomas.  相似文献   

15.
The McrA and McrB (modified cytosine restriction) systems of E. coli interfere with incoming DNA containing methylcytosine. DNA from many organisms, including all mammalian and plant DNA, is expected to be sensitive, and this could interfere with cloning experiments. The McrA and B phenotypes of a few strains have been reported previously (1-4). The Mcr phenotypes of 94 strains, primarily derived from E. coli K12, are tabulated here. We briefly review some evidence suggesting that McrB restriction of mouse-modified DNA does occur in vivo and does in fact interfere with cloning of specific mouse sequences.  相似文献   

16.
There is ample evidence from studies of both unicellular and multicellular organisms that helicase-inactivating mutations lead to cellular dysfunction and disease phenotypes. In this review, we will discuss the mechanisms underlying the basis for abnormal phenotypes linked to mutations in genes encoding DNA helicases. Recent evidence demonstrates that a clinically relevant patient missense mutation in Fanconi Anemia Complementation Group J exerts detrimental effects on the biochemical activities of the FANCJhelicase, and these molecular defects are responsible for aberrant genomic stability and a poor DNA damage response. The ability of FANCJ to use the energy from ATP hydrolysis to produce the force required to unwind duplex or G-quadruplex DNA structures or destabilize protein bound to DNA is required for its DNA repair functions in vivo. Strikingly, helicase-inactivating mutations can exert a spectrum of dominant negative phenotypes, indicating that expression of the mutant helicase protein potentially interferes with normal DNA metabolism and has an effect on basic cellular processes such as DNA replication, the DNA damage response, and protein trafficking. This review emphasizes that future studies of clinically relevant mutations in helicase genes will be important to understand the molecular pathologies of the associated diseases and their impact on heterozygote carriers.  相似文献   

17.
Human papillomaviruses (HPVs) are small DNA tumor viruses that are the causative agent of warts and are associated with many anogenital cancers. The viral gene encoding the E6 protein has been found to be involved in HPV oncogenesis. E6 is known to inactivate the cellular tumor suppressor, p53. In addition, E6 has been shown to bind to a variety of other cellular proteins. The focus of this study was to determine what role the interactions of E6 with a subset of cellular proteins which contain a common alpha-helical domain in their E6 binding region (alpha-helix partners) play in E6-mediated phenotypes. We generated transgenic mice expressing a mutant of E6, E6(I128T), which is defective for binding at least a subset of the alpha-helix partners, including E6AP, the ubiquitin ligase that mediates E6-dependent degradation of the p53 protein, to determine whether binding of alpha-helix partners plays a role in E6-mediated activities in vivo. Unlike mice expressing the wild-type E6 (strain K14E6(WT)), the mice expressing E6(I128T) lacked the ability to alter the radiation-induced block to DNA synthesis and promote the formation of benign skin tumors in conjunction with chemical carcinogens. Additionally, they displayed reduced levels of skin hyperplasia, spontaneous skin tumors, and tumor progression activity compared to those of the K14E6(WT) mice. From these results, we conclude that a domain in E6 that mediates alpha-helix partner binding is critical for E6-induced phenotypes in transgenic mice.  相似文献   

18.
We have detected Ca2+, Mg2+-dependent endonuclease activity in spleen cells of normal, Friend erythroleukemic, and phenylhydrazine-treated mice. When nuclei were isolated and incubated in the presence of Ca2+ and Mg2+ ions, the activity resulted in the production of 3'-OH termini in the cellular DNA and the release of chromatin due to internucleosomal DNA fragmentation. This enzyme activity was chromatin-bound and could be extracted from chromatin in an active form in 0.35 M KCl. The majority of endonuclease activity from erythroleukemic spleens was present in nuclei of precursor erythroid cells of low buoyant density (1.025-1.05 g/ml). Uninfected normal splenic tissue contained an endonuclease activity which was almost entirely confined to a B-lymphocyte population of high buoyant density (greater than 1.07 g/ml). Erythroid cell-enriched spleens from phenylhydrazine-treated mice exhibited a distribution of endonuclease activity in cells at low and high densities reflecting a mixture of erythroid and lymphoid cells. Cloned erythroleukemic cell lines propagated in vitro lacked cells of low density and showed no detectable endonuclease activity. However, nuclei from these cell lines were susceptible to exogenously added endonuclease extracted from erythroleukemic spleen cells. These same cell lines propagated as subcutaneous tumors contained endonuclease activity and a morphologically-similar low-density cell population which accounted for the endonuclease activity in these tumors. Nuclei from cloned lymphoid cell lines, representing different B-lymphocyte phenotypes, showed differences in the presence of endonuclease activity. Among the cell lines tested, only those expressing late B-cell markers showed detectable endonuclease activity.  相似文献   

19.
The functional organization of the nopaline A. tumefaciens plasmid pTiC58   总被引:62,自引:0,他引:62  
We have employed the P type plasmid RP4 and the transposons Tn1 and Tn7 to isolate insertion and deletion mutations in the nopaline Ti-plasmid pTiC58. Mutations that inactivate all known Ti phenotypes have been located on the physical map. Most importantly, we have positioned several regions involved in the determination of oncogenicity. They correspond to regions of homology between octopine and nopaline plasmids. One of these regions is part of the T-DNA, the Ti-plasmid DNA present in transformed plant cells. There are also segments of the T-DNA that are not essential for oncogenicity. One of these determines the biosynthesis of nopaline in tumors. The latter regions might allow insertion of foreign DNA that can then be introduced into plant cells.  相似文献   

20.
Angiomyolipomas are benign tumors of the kidney which express phenotypes of smooth muscle, fat, and melanocytes. These tumors appear with increased frequency in the autosomal dominant disorder tuberous sclerosis and are the leading cause of morbidity in adults with tuberous sclerosis. While benign, these tumors are capable of provoking life threatening hemorrhage and replacement of the kidney parenchyma, resulting in renal failure. The histogenesis of these tumors is currently unclear, although currently, we believe these tumors arise from "perivascular epithelioid cells" of which no normal counterpart has been convincingly demonstrated. Recently, stem cell precursors have been recognized that can give rise to smooth muscle and melanocytes. These precursors have been shown to express the neural stem cell marker NG2 and L1. In order to determine whether angiomyolipomas, which exhibit smooth muscle and melanocytic phenotypes, express NG2 and L1, we performed immunocytochemistry on a cell line derived from a human angiomyolipoma, and found that these cells are uniformly positive. Immunohistochemistry of human angiomyolipoma specimens revealed uniform staining of tumor cells, while renal cell carcinomas revealed positivity only of angiogenic vessels. These results support a novel histogenesis of angiomyolipoma as a defect in differentiation of stem cell precursors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号