首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
A restriction map of the entire Schizosaccharomyces pombe genome was constructed using two restriction enzymes (BamHI and PstI) that recognize 6 bp. The restriction map contains 420 minimally overlapping clones (miniset) and has 22 gaps. We located 126 genes, marker fragments of DNA (NotI and SfiI linking clones), and 36 transposable elements by hybridization to unique restriction fragments. Received: 21 November 1996; in revised form: 3 March 1997 / Accepted: 27 March 1997  相似文献   

4.
The suitability of fission yeast as a model for understanding the eukaryotic cell cycle has been validated in five years of exciting developments. We review recent advances in understanding the nature of the controls that regulate progression through the cell cycle and the coordination of DNA replication and mitosis.  相似文献   

5.
Cell cycle regulation in Schizosaccharomyces pombe   总被引:1,自引:0,他引:1  
Cdc2, a cyclin-dependent kinase, controls cell cycle progression in fission yeast. New details of Cdc2 regulation and function have been uncovered in recent studies. These studies involve cyclins that associate with Cdc2 in G1-phase and the proteins that regulate inhibitory phosphorylation of Cdc2 during S-phase and G2-phase. Recent investigations have also provided a better understanding of proteins that regulate DNA replication and that are directly or indirectly controlled by Cdc2.  相似文献   

6.
Cell cycle is the central process that regulates growth and division in all eukaryotes. Based on the environmental condition sensed, the cell lies in a resting phase G0 or proceeds through the cyclic cell division process (G1??S??G2??M). These series of events and phase transitions are governed mainly by the highly conserved Cyclin dependent kinases (Cdks) and its positive and negative regulators. The cell cycle regulation of fission yeast Schizosaccharomyces pombe is modeled in this study. The study exploits a detailed molecular interaction map compiled based on the published model and experimental data. There are accumulating evidences about the prominent regulatory role of specific phosphatases in cell cycle regulations. The current study emphasizes the possible role of multiple phosphatases that governs the cell cycle regulation in fission yeast S. pombe. The ability of the model to reproduce the reported regulatory profile for the wild-type and various mutants was verified though simulations.  相似文献   

7.
RecQ helicases: multiple roles in genome maintenance   总被引:23,自引:0,他引:23  
The RecQ helicases are highly conserved in evolution and are required for maintaining genome stability in all organisms. In humans, loss of RecQ helicase function is associated with predisposition to cancer and/or premature ageing. Recent data show that RecQ helicases have several roles during S phase of the cell cycle, ranging from facilitating the resumption of DNA synthesis at sites of replication fork breakdown to resolving structures during the process of homologous recombination.  相似文献   

8.
9.
10.
11.
H Yamano  J Gannon    T Hunt 《The EMBO journal》1996,15(19):5268-5279
A cell-free system derived from Xenopus eggs was used to identify the 'destruction box' of the Schizosaccharomyces pombe B-type cyclin, Cdc13, as residues 59-67: RHALDDVSN. Expression of indestructible Cdc13 from a regulated promoter in S.pombe blocked cells in anaphase and inhibited septation, showing that destruction of Cdc13 is necessary for exit from mitosis, but not for sister chromatid separation. In contrast, strong expression of a polypeptide comprising the N-terminal 70 residues of Cdc13, which acts as a competitive inhibitor of destruction box-mediated proteolysis, inhibited both sister chromatid separation and the destruction of Cdc13, whereas an equivalent construct with a mutated destruction box did not. Appropriately timed expression of this N-terminal fragment of Cdc13 overcame the G1 arrest seen in cdc10 mutant strains, suggesting that proteins required for the initiation of S phase are subject to destruction by the same proteolytic machinery as cyclin.  相似文献   

12.
《Biochimie》1995,77(4):279-287
Phosphotyrosyl turnover is an essential regulatory mechanism for many biological processes, and the balance between tyrosine kinases and phosphatases plays a major role in the control of cell proliferation. Phenylarsine oxide (PAO), a potent inhibitor of tyrosine phosphatases (PTPase), was used to investigate the involvement of PTPase in the growth and control of the cell cycle of the fission yeast Schizosaccharomyces pombe. Cell proliferation was arrested by treatment with PAO, which was found to inhibit cdc25 PTPase in vitro but appeared not to act in vivo on this mitosis inducer. The PAO-treated cells displayed a mono- or binucleated phenotype and a DNA content that was either 2C or 4C, indicating a cell cycle arrest with a failure to complete cytokinesis. Entry into the cell division cycle from the G0 quiescent stage was also delayed by treatment with PAO. These results suggest that a number of key events in the mitotic cell cycle are regulated by as yet unidentified PTPases.  相似文献   

13.
Cell growth and uptake of glucose and glycine during the cell cycle were studied in synchronous cultures of Schizosaccharomyces pombe. Rates of accumulation of glucose and glycine were constant during most of the cell cycle, implying a constant rate of cell mass increase. Rates of uptake of glycine appeared to double at an average cell age of 0.9 generations.  相似文献   

14.
15.
16.
17.
The cytoplasmic distribution of cellular structures is known to depend on the balance between plus- and minus-end-directed motor complexes. Among the plus-end-directed kinesins, kinesin-1 and -2 have been implicated in the outward movement of many organelles. To test for a role of kinesin-1 previous studies mostly relied on the overexpression of dominant-negative kinesin-1 constructs. The latter are often cytotoxic, modify the microtubule network and indirect effects related to altered microtubule dynamics should be excluded. In the present study we present a novel kinesin-1 construct, encompassing the first 330 amino acids of kinesin heavy chain fused to GFP (kin330-GFP) that does not alter microtubules upon its overexpression. Kin330-GFP functionally inhibits kinesin-1 because it induces the peri-nuclear accumulation of mitochondria and intermediate filaments. Using this construct and previously established siRNA-mediated knock-down of kinesin-2 function, we assess the role of both motors in the subcellular distribution of distinct steps of the vaccinia virus (VV) life cycle. We show that kinesin-1, but not kinesin-2, contributes to the specific cytoplasmic distribution of three of the four steps of VV morphogenesis tested. These results are discussed with respect to the possible regulation of kinesin-1 during VV infection.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号