首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
血管生成在肿瘤的生长、侵袭和转移中起着重要的作用。通过抑制新生血管的形成和发展来达到杀伤肿瘤细胞的目的,是一种确实有效的"饥饿"疗法。近年来对抗血管生成治疗肿瘤的研究取得了很大的进展,目前已建立了多种实验模型和评价标准,包括体内和体外两大类。每种模型都有其优缺点,可根据研究内容选择合适、有效的实验模型。  相似文献   

2.
The dissemination of tumor cells prior to the surgical resection of early stage tumors poses a serious risk to the disease free survival of cancer patients. This risk arises from the latent capacity of these cells to form solid metastatic lesions after a prolonged period of dormancy, exacerbated by the fact that these cells are often refractory to adjuvant chemotherapeutic protocols. Ensuring the long term survival of cancer patients therefore necessitates an understanding of the mechanisms of tumor cell dormancy and the accompanying drug resistance. Experiments designed to compare the biological behavior of metastatic versus non-metastatic variants of tumor cells provide evidence that there exists a phenomenon of single-cell dormancy which may depend on a reciprocal dialogue between the tumor cell and the tissue microenvironment. Through a combination of 3-dimensional cell culture technique and in vivo models investigators are now beginning to elucidate the molecular mechanisms underlying this phenomenon. Here we review the results of a series of experiments describing the role of cell adhesion events in dictating tumor cell behavior, including the balance between proliferation and dormancy, and the acquisition of drug resistance.  相似文献   

3.
Malignant cancers that lead to fatal outcomes for patients may remain dormant for very long periods of time. Although individual mechanisms such as cellular dormancy, angiogenic dormancy and immunosurveillance have been proposed, a comprehensive understanding of cancer dormancy and the “switch” from a dormant to a proliferative state still needs to be strengthened from both a basic and clinical point of view. Computational modeling enables one to explore a variety of scenarios for possible but realistic microscopic dormancy mechanisms and their predicted outcomes. The aim of this paper is to devise such a predictive computational model of dormancy with an emergent “switch” behavior. Specifically, we generalize a previous cellular automaton (CA) model for proliferative growth of solid tumor that now incorporates a variety of cell-level tumor-host interactions and different mechanisms for tumor dormancy, for example the effects of the immune system. Our new CA rules induce a natural “competition” between the tumor and tumor suppression factors in the microenvironment. This competition either results in a “stalemate” for a period of time in which the tumor either eventually wins (spontaneously emerges) or is eradicated; or it leads to a situation in which the tumor is eradicated before such a “stalemate” could ever develop. We also predict that if the number of actively dividing cells within the proliferative rim of the tumor reaches a critical, yet low level, the dormant tumor has a high probability to resume rapid growth. Our findings may shed light on the fundamental understanding of cancer dormancy.  相似文献   

4.
Anti-angiogenic cancer treatments induce tumor starvation and regression by targeting the tumor vasculature that delivers oxygen and nutrients. Mathematical models prove valuable tools to study the proof-of-concept, efficacy and underlying mechanisms of such treatment approaches. The effects of parameter value uncertainties for two models of tumor development under angiogenic signaling and anti-angiogenic treatment are studied. Data fitting is performed to compare predictions of both models and to obtain nominal parameter values for sensitivity analysis. Sensitivity analysis reveals that the success of different cancer treatments depends on tumor size and tumor intrinsic parameters. In particular, we show that tumors with ample vascular support can be successfully targeted with conventional cytotoxic treatments. On the other hand, tumors with curtailed vascular support are not limited by their growth rate and therefore interruption of neovascularization emerges as the most promising treatment target.  相似文献   

5.
外泌体可将其内容物蛋白质、脂类、RNA、循环DNA等生物活性分子由供体细胞转运至受体细胞,对细胞与细胞间的通讯发挥重要调控作用。肿瘤细胞可以主动释放包括外泌体在内的胞外囊泡进入周围微环境。血管为肿瘤的生长提供氧气和营养物质,因此血管新生是肿瘤生长所必需的。研究发现,蛋白或非编码RNA在不同肿瘤细胞衍生的外泌体中存在特异性表达的现象。肿瘤外泌体将其内含的非编码RNA以及蛋白转运至内皮细胞,上调促血管新生因子的表达,进而提高内皮细胞的活性,促进其增殖、迁移和管腔形成。  相似文献   

6.
We have reported that prophylactic as well as therapeutic administration of neem leaf glycoprotein (NLGP) induces significant restriction of solid tumor growth in mice. Here, we investigate whether the effect of such pretreatment (25µg/mice; weekly, 4 times) benefits regulation of tumor angiogenesis, an obligate factor for tumor progression. We show that NLGP pretreatment results in vascular normalization in melanoma and carcinoma bearing mice along with downregulation of CD31, VEGF and VEGFR2. NLGP pretreatment facilitates profound infiltration of CD8+ T cells within tumor parenchyma, which subsequently regulates VEGF-VEGFR2 signaling in CD31+ vascular endothelial cells to prevent aberrant neovascularization. Pericyte stabilization, VEGF dependent inhibition of VEC proliferation and subsequent vascular normalization are also experienced. Studies in immune compromised mice confirmed that these vascular and intratumoral changes in angiogenic profile are dependent upon active adoptive immunity particularly those mediated by CD8+ T cells. Accumulated evidences suggest that NLGP regulated immunomodulation is active in tumor growth restriction and normalization of tumor angiogenesis as well, thereby, signifying its clinical translation.  相似文献   

7.
Recurrence of breast cancer often follows a long latent period in which there are no signs of cancer, and metastases may not become clinically apparent until many years after removal of the primary tumor and adjuvant therapy. A likely explanation of this phenomenon is that tumor cells have seeded metastatic sites, are resistant to conventional therapies, and remain dormant for long periods of time 1-4.The existence of dormant cancer cells at secondary sites has been described previously as quiescent solitary cells that neither proliferate nor undergo apoptosis 5-7. Moreover, these solitary cells has been shown to disseminate from the primary tumor at an early stage of disease progression 8-10 and reside growth-arrested in the patients'' bone marrow, blood and lymph nodes 1,4,11. Therefore, understanding mechanisms that regulate dormancy or the switch to a proliferative state is critical for discovering novel targets and interventions to prevent disease recurrence. However, unraveling the mechanisms regulating the switch from tumor dormancy to metastatic growth has been hampered by the lack of available model systems. in vivo and ex vivo model systems to study metastatic progression of tumor cells have been described previously 1,12-14. However these model systems have not provided in real time and in a high throughput manner mechanistic insights into what triggers the emergence of solitary dormant tumor cells to proliferate as metastatic disease. We have recently developed a 3D in vitro system to model the in vivo growth characteristics of cells that exhibit either dormant (D2.OR, MCF7, K7M2-AS.46) or proliferative (D2A1, MDA-MB-231, K7M2) metastatic behavior in vivo . We demonstrated that tumor cells that exhibit dormancy in vivo at a metastatic site remain quiescent when cultured in a 3-dimension (3D) basement membrane extract (BME), whereas cells highly metastatic in vivo readily proliferate in 3D culture after variable, but relatively short periods of quiescence. Importantly by utilizing the 3D in vitro model system we demonstrated for the first time that the ECM composition plays an important role in regulating whether dormant tumor cells will switch to a proliferative state and have confirmed this in in vivo studies15-17. Hence, the model system described in this report provides an in vitro method to model tumor dormancy and study the transition to proliferative growth induced by the microenvironment.Download video file.(58M, mov)  相似文献   

8.
Metastatic progression is thought to result from genetically advanced ?fully-malignant“ tumor cells. Within the concept the prevailing view holds that such cells disseminate mostly from large tumors and are capable of growing into metastases once they arrive at a distant site. Support for this scenario comes from numerous mouse models in which transplanted tumor cells grow into metastases within days or weeks. However, the assumption of such fully-malignant disseminating cells in human cancer is misleading and is neither supported by mathematical modeling of survival data from cancer patients nor by ex-vivo genomic data from disseminated cancer cells. For example, in breast cancer the growth of metastases is highly homogeneous and takes on average six years, the number of disseminated tumor cells before diagnosis of metastasis is similar for different tumor stages, and the genomic aberrations of disseminated cancer cells do rarely correspond to those in the primary tumor. Since these facts question conventional concepts of metastatic progression we provide a model of cancer progression in which time considerations and direct ex-vivo data form a starting point. In the proposed model tumor dormancy is a characteristic of almost all migrated tumor cells and metastatic growth is a rare, stochastic, evolutionary process of selection and mutation of cells that often disseminate shortly after transformation at the primary site.  相似文献   

9.
Cancer is caused by genetic changes that activate oncogenes or inactivate tumor suppressor genes. The repair or inactivation of mutant genes may be effective in the treatment of cancer. Drugs that target oncogenes have shown to be effective in the treatment of some cancers. However, it is still unclear why the inactivation of a single cancer associated gene would ever result in the elimination of tumor cells. In experimental transgenic mouse models the consequences of oncogene inactivation depend upon the genetic and cellular context. In some cases, oncogene inactivation results in the elimination of all or almost all tumor cells through apoptosis or terminal differentiation. However, in other cases, oncogene inactivation results in the apparent loss of the neoplastic properties of tumor cells, that now appear and behave like normal cells, however, upon oncogene reactivation rapidly recover their neoplastic phenotype. These observations illustrate that oncogene inactivation can result in a state of tumor dormancy. Understanding when and how oncogene inactivation induces sustained tumor regression will be important towards the development of successful therapeutic strategies for cancer.  相似文献   

10.
The presence of autoantibodies in cancer has become relevant in recent years. We demonstrated that autoantibodies purified from the sera of breast cancer patients activate muscarinic acetylcholine receptors in tumor cells. Immunoglobulin G (IgG) from breast cancer patients in T1N0Mx stage (tumor size≤2 cm, without lymph node metastasis) mimics the action of the muscarinic agonist carbachol stimulating MCF-7 cell proliferation, migration and invasion. Angiogenesis is a central step in tumor progression because it promotes tumor invasion and metastatic spread. Vascular endothelial growth factor-A (VEGF-A) is the main angiogenic mediator, and its levels have been correlated with poor prognosis in cancer. The aim of the present work was to investigate the effect of T1N0Mx-IgG on the expression of VEGF-A, and the in vivo neovascular response triggered by MCF-7 cells, via muscarinic receptor activation. We demonstrated that T1N0Mx-IgG (10−8 M) and carbachol (10−9 M) increased the constitutive expression of VEGF-A in tumor cells, effect that was reverted by the muscarinic antagonist atropine. We also observed that T1N0Mx-IgG and carbachol enhanced the neovascular response produced by MCF-7 cells in the skin of NUDE mice. The action of IgG or carbachol was reduced in the presence of atropine. In conclusion, T1N0Mx-IgG and carbachol may promote VEGF-A production and neovascularization induced by breast tumor cells via muscarinic receptors activation. These effects may be accelerating breast tumor progression.  相似文献   

11.
Systemic lupus erythematosus (SLE) is a human autoimmune disease of unknown etiology. Clinical, serologic, immunologic, and pathologic findings are highly variable in different patients and at different times in the same patient. Murine and canine animal models of SLE have been found with clinicopathologic abnormalities resembling those observed in humans. Each animal model has unique characteristics; taken together they reflect the spectrum of disease in human SLE.Investigations in the animals have suggested that genetic, hormonal, immunologic, viral, and other environmental factors contribute to and modify the expression of disease. Where analogous studies are available for humans, the same factors have been found to modify disease expression in a similar fashion. Together, these studies have helped to clarify the multifactorial basis for SLE.The best characterized abnormalities are immunologic. These include excessive B cell function with the formation of large amounts of autoantibodies, and T cell abnormalities which include defects in T cell regulatory function as well as certain T cell effector functions.The animal models of SLE also serve as convenient test subjects for newer therapeutic modalities. It is hoped that further study of the animal models will provide a more rational approach to therapeutic modulation of disease in humans with SLE.  相似文献   

12.
Ten phenotypic forms of oculocutaneous albinism (OCA) and four forms of ocular albinism (OA) have been identified in man. All have optic neuronal decussation defects at the optic chiasm. Thus any proposed animal model for these disorders must share optic neuronal decussation defects in addition to hypopigmentation. Three, tyrosinase-negative (ty-neg), yellow mutant (ym), and platinum (pt), OCA appear to be allelic in humans. Two, ty-neg and pt, OCA appear to be analogous to c-locus mutants c/c and cp/cp in mice, but no homologue is known in mice for ym OCA. Tyrosinase-positive (ty-pos) OCA, which is nonallelic with ty-neg OCA, shares many morphological and biochemical features with pink-eyed mice. Chediak-Higashi syndrome (CHS) and Hermansky-Pudlak syndrome (HPS) appear to be due to genes acting extrinsic to the melanin pathway. CHS is homologous with beige in mice. HPS was investigated in northwestern Puerto Rico, where it affects approximately 1 in 2,000 persons. Approximately 68% of 37 deceased HPS patients died from sequelae of ceroid storage disease, restrictive lung disease between ages 35 and 46 years (43%), and granulomatous colitis (8%) or hemorrhage (16%). The most accurate and consistent diagnostic feature of HPS is lack of platelet dense bodies. HPS patients with ceroid storage disease had high urinary levels of long-chain isoprenoid alcohols, dolichols, similar to that seen in the neuronal-ceroid lipofuscinoses (Batten disease). Dolichols are constituents of lysosomes, and their elevation in HPS suggests that this syndrome carries a lysosomal defect. There is no degradative pathway for ceroid and dolichols, which are eliminated by exocytosis. The exocytic process is thought to involve a thioendoproteinase. Pale-ear mice have been proposed as a model for HPS; their platelets lack dense bodies, and they are depigmented. Leupeptin, a thioendoproteinase inhibitor, administered to 100-day-old pale-eared and black wild-type C57 mice for 10 days resulted in the accumulation of ceroid in tissues in the same pattern as that in HPS, but granulomas of gut or fibrosis of lungs were not seen. Determinations of homology between mice and men at the molecular level is now possible with the isolation of mouse tyrosinase by Yamamoto et al. and isolation by Kwon et al. of human tyrosinase mapping at the c-locus in mice.  相似文献   

13.
Humanized mice are crucial tools for studying human pathogens in systemic situations. An animal model of human coronavirus infectious disease has been generated by gene transfer of the human receptor for virus-cell interaction (aminopeptidase N, APN, CD13) into mice. We showed that in vitro and in vivo infections across the species barrier differ in their requirements. Transgenic cells were susceptible to human coronavirus HCoV-229E infection demonstrating the requirement of hAPN for viral cell entry. Transgenic mice, however, could not be infected suggesting additional requirements for in vivo virus susceptibility. Crossing hAPN transgenic mice with interferon unresponsive Stat1−/− mice resulted in markedly enhanced virus replication in vitro but did not result in detectable virus replication in vivo. Adaptation of the human virus to murine cells led to successful infection of the humanized transgenic mice. Future genetic engineering approaches are suggested to provide animal models for the better understanding of human infectious diseases.  相似文献   

14.
Angiopoietins have been increasingly implicated to play important roles in blood vessel formation, remodeling, maturation, and maintenance. However, their roles in tumor angiogenesis and hence tumor growth and metastasis still remain uncertain. In this work, angiopoietin 1 expression was amplified in human cervical cancer HeLa cells by stable transfection or recombinant human adenovirus-mediated gene transfer. We show that increased angiopoietin 1 expression promoted in vivo growth of human cervical cancers in mice by promoting tumor angiogenesis and inhibiting tumor cell apoptosis. Furthermore, we also show for the first time that overexpression of angiopoietin 1 also leads to increased tumor vessel plasticity with a large number of vessels lacking periendothelial supporting cells. These results indicate that angiopoietin 1 promotes tumor angiogenesis and tumor vessel plasticity of human cervical cancer in mice.  相似文献   

15.
16.

Stroke is a leading cause of death and disability worldwide. Several mechanisms are involved in the pathogenesis of ischemic stroke (IS). The contributory role of the inflammatory and immunity processes was demonstrated both in vitro and in animal models, and was confirmed in humans. IS evokes an immediate inflammatory response that involves complex cellular and molecular mechanisms. All components of the innate and adaptive immunity systems are involved in several steps of the ischemic cascade. In the early phase, inflammatory and immune mechanisms contribute to the brain tissue damage, whereas, in the late phase, they participate to the tissue repair processes. In particular, damage-associated molecular patterns (DAMPs) appear critical for the promotion of altered blood brain barrier permeability, leukocytes infiltration, tissue edema and brain injury. Conversely, the activation of regulatory T lymphocytes (Tregs) plays protective effects. The identification of specific cellular/molecular elements belonging to the inflammatory and immune responses, contributing to the brain ischemic injury and tissue remodeling, offers the advantage to design adequate therapeutic strategies. In this article, we will present an overview of the knowledge on inflammatory and immunity processes in IS, with a particular focus on the role of DAMPs and leukocytes infiltration. We will discuss evidence obtained in preclinical models of IS and in humans. The main molecular mechanisms useful for the development of novel therapeutic approaches will be highlighted. The translation of experimental findings to the human disease is still a difficult step to pursue. Further investigations are required to fill up the existing gaps.

  相似文献   

17.
18.
新生血管生成包括血管发生和微血管生成。微血管生成也称血管新生,在胚胎发育、正常生理和病理生理过程中均发挥重要作用。近年来研究发现,肿瘤、糖尿病视网膜病变和风湿性关节炎等疾病的发生发展均与新生血管生成有关,而抑制血管生成已成为治疗这些疾病的有效策略。建立新生血管生成模型对研究该类疾病的分子机制和研发相关的治疗药物有极其重要的价值。为此,我们简要综述近年来新生血管生成模型及其应用进展。  相似文献   

19.
20.
Rabbit antibodies have been widely used in research and diagnostics due to their high antigen specificity and affinity. Though these properties are also highly desirable for therapeutic applications, rabbit antibodies have remained untapped for human disease therapy. To evaluate the therapeutic potential of rabbit monoclonal antibodies (RabMAbs), we generated a panel of neutralizing RabMAbs against human vascular endothelial growth factor-A (VEGF). These neutralizing RabMAbs are specific to VEGF and do not cross-react to other members of the VEGF protein family. Guided by sequence and lineage analysis of a panel of neutralizing RabMAbs, we humanized the lead candidate by substituting non-critical residues with human residues within both the frameworks and the CDR regions. We showed that the humanized RabMAb retained its parental biological properties and showed potent inhibition of the growth of H460 lung carcinoma and A673 rhabdomyosarcoma xenografts in mice. These studies provide proof of principle for the feasibility of developing humanized RabMAbs as therapeutics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号