首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have carried out a domain analysis of POL32, the third subunit of Saccharomyces cerevisiae DNA polymerase delta (Pol delta). Interactions with POL31, the second subunit of Pol delta, are specified by the amino-terminal 92 amino acids, whereas interactions with the replication clamp proliferating cell nuclear antigen (PCNA, POL30) reside at the extreme carboxyl-terminal region. Pol32 binding, in vivo and in vitro, to the large subunit of DNA polymerase alpha, POL1, requires the carboxyl-proximal region of Pol32. The amino-terminal region of Pol32 is essential for damage-induced mutagenesis. However, the presence of its carboxyl-terminal PCNA-binding domain enhances the efficiency of mutagenesis, particularly at high loads of DNA damage. In vitro, in the absence of effector DNA, the PCNA-binding domain of Pol32 is essential for PCNA-Pol delta interactions. However, this domain has minimal importance for processive DNA synthesis by the ternary DNA-PCNA-Pol delta complex. Rather, processivity is determined by PCNA-binding domains located in the Pol3 and/or Pol31 subunits. Using diagnostic PCNA mutants, we show that during DNA synthesis the carboxyl-terminal domain of Pol32 interacts with the carboxyl-terminal region of PCNA, whereas interactions of the other subunit(s) of Pol delta localize largely to a hydrophobic pocket at the interdomain connector loop region of PCNA.  相似文献   

2.
Gao Y  Zhou Y  Xie B  Zhang S  Rahmeh A  Huang HS  Lee MY  Lee EY 《Biochemistry》2008,47(43):11367-11376
Protein phosphatase-1 (PP1) is a Ser/Thr protein phosphatase that participates in the phosphorylation/dephosphorylation regulation of a diverse range of cellular processes. The PP1 catalytic subunit (PP1) achieves this by its ability to interact with many targeting subunits such that PP1 activity is thereby specified against phosphoprotein substrates in the microvicinity of its targeting subunit. DNA polymerase delta (Pol delta) is a key enzyme in mammalian chromosomal replication. It consists of four subunits, p125, p50, p68, and p12. We identify p68 as a novel PP1 targeting subunit. PP1 was shown to associate with human DNA polymerase delta by affinity chromatography and coimmunoprecipitation assays from mammalian cell lysates and in vitro by pull-down assays. The binding domain for PP1 was identified as the sequence KRVAL, a variant of the canonical RVxF PP1 binding motif. These studies provide the first evidence for the targeting of PP1 to DNA polymerase delta. We also show that CK2 phosphorylates the Pol delta p125, p68, and p12 subunits and that these phosphorylated subunits are substrates for PP1. These findings identify a new role for p68 as a PP1 targeting subunit that implicates PP1 in the dephosphorylation of Pol delta. Our findings also show that CK2 is a strong candidate for the protein kinase involved in the in vivo phosphorylation of p68.  相似文献   

3.
An essential eukaryotic DNA polymerase, DNA polymerase delta (pol delta), synthesizes DNA processively in the presence of proliferating cell nuclear antigen (PCNA). Recently, a 66 kDa polypeptide (p66) that displays significant homology within its PCNA binding domain to that of fission yeast cdc27 was identified as a component of mouse and calf thymus pol delta. Our studies show that p66 interacts tightly with other subunits of pol delta during size fractionation of human cell extracts, and co-immunoprecipitates with these subunits along with PCNA-dependent polymerase activity. Active human pol delta could be reconstituted by co-expressing p125, p50, and p66 recombinant baculoviruses, but not by co-expressing p125 and p50 alone. Interaction studies demonstrated that p66 stabilizes the association between p125 and p50. Pull-down assays with PCNA-linked beads demonstrated that p66 increases the overall affinity of pol delta for PCNA. These results indicate that p66 is a functionally important subunit of human pol delta that stabilizes the pol delta complex and increases the affinity of pol delta for PCNA.  相似文献   

4.
Eukaryotic DNA polymerase delta is thought to consist of three (budding yeast) or four subunits (fission yeast, mammals). Four human genes encoding polypeptides p125, p50, p66, and p12 have been assigned as subunits of DNA polymerase delta. However, rigorous purification of human or bovine DNA polymerase delta from natural sources has usually yielded two-subunit preparations containing only p125 and p50 polypeptides. To reconstitute an intact DNA polymerase delta, we have constructed recombinant baculoviruses encoding the p125, p50, p66, and p12 subunits. From insect cells infected with four baculoviruses, protein preparations containing the four polypeptides of expected sizes were isolated. The four-subunit DNA polymerase delta displayed a specific activity comparable with that of the human, bovine, and fission yeast proteins isolated from natural sources. Recombinant DNA polymerase delta efficiently replicated singly primed M13 DNA in the presence of replication protein A, proliferating cell nuclear antigen, and replication factor C and was active in the SV40 DNA replication system. A three-subunit subcomplex consisting of the p125, p50, and p66 subunits, but lacking the p12 subunit, was also isolated. The p125, p50, and p66 polypeptides formed a stable complex that displayed DNA polymerizing activity 15-fold lower than that of the four-subunit polymerase. p12, expressed and purified individually, stimulated the activity of the three-subunit complex 4-fold on poly(dA)-oligo(dT) template-primer but had no effect on the activity of the four-subunit enzyme. Therefore, the p12 subunit is required to reconstitute fully active recombinant human DNA polymerase delta.  相似文献   

5.
Mammalian DNA polymerase (Pol) delta is essential for DNA replication. It consists of four subunits, p125, p50, p68, and p12. We report the discovery that the p12 subunit is rapidly degraded in cultured human cells by DNA damage or replication stress brought about by treatments with UV, methyl methanesulfonate, hydroxyurea, and aphidicolin. The degradation of p12 is due to an accelerated rate of proteolysis that is inhibited by the proteasome inhibitors, MG132 and lactacystin. UV treatment converts Pol delta in vivo to the three-subunit form lacking p12. This was demonstrated by its isolation using immunoaffinity chromatography. The three-subunit enzyme retains activity on poly(dA)/oligo(dT) templates but is impaired in its ability to extend singly primed M13 templates, clearly indicating that its in vivo functions are likely to be compromised. This transformation of Pol delta by modification of its quaternary structure is reversible in vitro by the addition of the p12 subunit and could represent a novel in vivo mechanism for the modulation of Pol delta function. UV and hydroxyurea-triggered p12 degradation is blocked in ATR(-/-) cells but not in ATM(-/-) cells, thereby demonstrating that p12 degradation is regulated by ATR, the apical kinase that regulates the damage response in S-phase. These findings reveal a novel addition to the cellular repertoire of DNA damage responses that also impacts our understanding of the role of Pol delta in both DNA replication and DNA repair.  相似文献   

6.
Using proliferating cell nuclear antigen affinity chroma-tography and glycerol gradient centrifugation of partially purified fractions from mouse FM3A cells we have been able to isolate novel complexes of DNA polymerase delta and DNA ligase 1 containing clearly defined subunit compositions. In addition to the well known catalytic subunit of 125 kDa and accessory subunit of 48 kDa, the DNA polymerase delta complex contained three supplementary components, one of which reacted with antibodies directed against the p40 and p37 subunits of RF-C. Of the two remaining components, one termed p66 turned out to be coded by a gene whose putative C-terminal domain displayed significant homology with that of the Cdc27 subunit of Schizosaccharomyces pombe polymerase delta. On the basis of these and other observations, we propose p66 to be the missing third subunit of mammalian DNA polymerase delta. The DNA ligase 1 complex was made up of three novel components in addition to the 125 kDa catalytic subunit, two of which, p48 and p66, were common to DNA polymerase delta. We discuss the implications of our findings within the current framework of our understanding of DNA replication.  相似文献   

7.
The interaction between proliferating cell nuclear antigen (PCNA) and DNA polymerase delta is essential for processive DNA synthesis during DNA replication/repair; however, the identity of the subunit of DNA polymerase delta that directly interacts with PCNA has not been resolved until now. In the present study we have used reciprocal co-immunoprecipitation experiments to determine which of the two subunits of core DNA polymerase delta, the 125-kDa catalytic subunit or the 50-kDa small subunit, directly interacts with PCNA. We found that PCNA co-immunoprecipitated with human p50, as well as calf thymus DNA polymerase delta heterodimer, but not with p125 alone, suggesting that PCNA directly interacts with p50 but not with p125. A PCNA-binding motif, similar to the sliding clamp-binding motif of bacteriophage RB69 DNA polymerase, was identified in the N terminus of p50. A 22-amino acid oligopeptide containing this sequence (MRPFL) was shown to bind PCNA by far Western analysis and to compete with p50 for binding to PCNA in co-immunoprecipitation experiments. The binding of p50 to PCNA was inhibited by p21, suggesting that the two proteins compete for the same binding site on PCNA. These results establish that the interaction of PCNA with DNA polymerase delta is mediated through the small subunit of the enzyme.  相似文献   

8.
Mammalian DNA polymerase delta (pol delta), a key enzyme of chromosomal DNA replication, consists of four subunits as follows: the catalytic subunit; p125, which is tightly associated with the p50 subunit; p68, a proliferating cell nuclear antigen (PCNA)-binding protein; and a fourth subunit, p12. In this study, the functional roles of the p12 subunit of pol delta were studied. The inter-subunit interactions of the p12 subunit were determined by yeast two-hybrid assays and by pulldown assays. These assays revealed that p12 interacts with p125 as well as p50. This dual interaction of p12 suggests that it may serve to stabilize the p125-p50 interaction. p12 was shown to be a novel PCNA-binding protein. This was confirmed by identification of a PCNA-binding motif at its N terminus by binding assays and by site-directed mutagenesis. The activities and reaction products of recombinant pol delta containing a p12 mutant defective in PCNA binding, as well as purified recombinant pol delta and its subassemblies, were analyzed. Our results indicate that p12 contributes to PCNA-dependent pol delta activity, i.e. the p12-PCNA interaction is functional. Our data indicate that both p12 and p68 are required for optimal pol delta activity. This supports the hypothesis that the interaction between pol delta and PCNA is a divalent one that involves p12 and p68. We propose a model in which pol delta interacts with PCNA via at least two of its subunits, and one in which p12 could play a role in stabilizing the overall pol delta-PCNA complex as well as pol delta itself.  相似文献   

9.
DNA polymerase delta (Pol delta) from Saccharomyces cerevisiae consists of three subunits, Pol3 (125 kDa), Pol31 (55 kDa), and Pol32 (40 kDa), present at a 1:1:1 stoichiometry in purified preparations. Previously, based on gel filtration studies of Pol delta, we suggested that the enzyme may be a dimer of catalytic cores, with dimerization mediated by the Pol32 subunit (Burgers, P. M., and Gerik, K. J. (1998) J. Biol. Chem. 273, 19756-19762). We now report on extensive gel filtration, glycerol gradient sedimentation, and analytical equilibrium centrifugation studies of Pol delta and of several subassemblies of Pol delta. The hydrodynamic parameters of these assemblies indicate that (i) Pol32 is a rod-shaped protein with a frictional ratio f/f(0) = 2.22; (ii) any complex containing Pol32 also has an extremely asymmetric shape; (iii) the results of these studies are independent of concentration (varied between 0.1-20 microm); (iv) all complexes are monomeric under the conditions studied (up to 20 microm). Moreover, a two-hybrid analysis of the Pol32 subunit did not detect a Pol32-Pol32 interaction in vivo. Therefore, we conclude that the assembly structure of Pol delta is that of a monomer.  相似文献   

10.
Xie B  Mazloum N  Liu L  Rahmeh A  Li H  Lee MY 《Biochemistry》2002,41(44):13133-13142
Mammalian DNA polymerase delta was originally characterized as a tightly associated heterodimer consisting of the catalytic subunit, p125, and the p50 subunit. Recently, two additional subunits, the third (p68) and fourth subunits (p12), have been identified. The heterotetrameric human pol delta complex was reconstituted by overexpression of the four subunits in Sf9 cells, followed by purification to near-homogeneity using FPLC chromatography. The properties of the four-subunit enzyme were shown to be functionally indistinguishable from those of pol delta isolated from calf thymus. The physicochemical properties of both the reconstituted heterotetramer and the heterodimer of the p125 and p50 subunits were examined by gel filtration and glycerol gradient ultracentrifugation. These studies show quite clearly that the heterodimer and heterotetramer complexes do not behave in solution as dimeric structures. This issue is of significance because several studies of the yeast pol delta complexes have indicated that the third subunit is able to bring about the dimerization of the pol delta complex. The heterodimer is only weakly stimulated by PCNA, whereas the heterotetramer is strongly stimulated to a level with a specific activity comparable to that of the calf thymus enzyme. These results resolve earlier, conflicting reports on the response of the heterodimer to PCNA. Nevertheless, the heterodimer does have some ability to interact functionally with PCNA, consistent with evidence that the p125 subunit itself has an ability to interact with PCNA. The functional interaction of PCNA with the pol delta complex may likely involve multiple contacts.  相似文献   

11.
The subunit that mediates binding of proliferating cell nuclear antigen (PCNA) to human DNA polymerase delta has not been clearly defined. We show that the third subunit of human DNA polymerase delta, p66, interacts with PCNA through a canonical PCNA-binding sequence located in its C terminus. Conversely, p66 interacts with the domain-interconnecting loop of PCNA, a region previously shown to be important for DNA polymerase delta activity and for binding of the cell cycle inhibitor p21(Cip1). In accordance with this, a peptide containing the PCNA-binding domain of p21(Cip1) inhibited p66 binding to PCNA and the activity of native three-subunit DNA polymerase delta. Furthermore, pull-down assays showed that DNA polymerase delta requires p66 for interaction with PCNA. More importantly, only reconstituted three-subunit DNA polymerase delta displayed PCNA-dependent DNA replication that could be inhibited by the PCNA-binding domain of p21(Cip1). Direct participation of p66 in PCNA-dependent DNA replication in vivo is demonstrated by co-localization of p66 with PCNA and DNA polymerase delta within DNA replication foci. Finally, in vitro phosphorylation of p66 by cyclin-dependent kinases suggests that p66 activity may be subject to cell cycle-dependent regulation. These results suggest that p66 is the chief mediator of PCNA-dependent DNA synthesis by DNA polymerase delta.  相似文献   

12.

Background  

DNA polymerase δ plays an essential role in chromosomal DNA replication in eukaryotic cells, being responsible for synthesising the bulk of the lagging strand. In fission yeast, Pol δ is a heterotetrameric enzyme comprising four evolutionarily well-conserved proteins: the catalytic subunit Pol3 and three smaller subunits Cdc1, Cdc27 and Cdm1. Pol3 binds directly to the B-subunit, Cdc1, which in turn binds the C-subunit, Cdc27. Human Pol δ comprises the same four subunits, and the crystal structure was recently reported of a complex of human p50 and the N-terminal domain of p66, the human orthologues of Cdc1 and Cdc27, respectively.  相似文献   

13.
Human DNA polymerase δ (Pol δ) is involved in various DNA damage responses in addition to its central role in DNA replication. The Pol δ4 holoenzyme consists of four subunits, p125, p50, p68 and p12. It has been established that the p12 subunit is rapidly degraded in response to DNA damage by UV leading to the in vivo conversion of Pol δ4 to Pol δ3, a trimeric form lacking the p12 subunit. We provide the first analysis of the time-dependent recruitment of the individual Pol δ subunits to sites of DNA damage produced by UV irradiation through 5 μm polycarbonate filters by immunofluorescence microscopy and laser scanning cytometry (LSC). Quantitative analysis demonstrates that the recruitments of the three large subunits was near complete by 2 h and did not change significantly up to 4 h after UV exposure. However, the recruitment of p12 was incomplete even at 4 h, with about 70% of the Pol δ lacking the p12 subunit. ChIP analysis of Pol δ after global UV irradiation further demonstrates that only p125, p50 and p68 were present. Thus, Pol δ3 is the predominant form of Pol δ at sites of UV damage as a result of p12 degradation. Using LSC, we have further confirmed that Pol δ was recruited to CPD damage sites in all phases of the cell cycle. Collectively, our results show that Pol δ at the DNA damage site is the Pol δ trimer lacking p12 regardless of the cell cycle phase.  相似文献   

14.
Rahmeh AA  Zhou Y  Xie B  Li H  Lee EY  Lee MY 《Biochemistry》2012,51(1):416-424
DNA polymerase delta (Pol δ) is a central enzyme for eukaryotic DNA replication and repair. Pol δ is a complex of four subunits p125, p68, p50, and p12. The functional properties of Pol δ are largely determined by its interaction with its DNA sliding clamp PCNA (proliferating cellular nuclear antigen). The regulatory mechanisms that govern the association of Pol δ with PCNA are largely unknown. In this study, we identified S458, located in the PCNA-interacting protein (PIP-Box) motif of p68, as a phosphorylation site for PKA. Phosphomimetic mutation of S458 resulted in a decrease in p68 affinity for PCNA as well as the processivity of Pol δ. Our results suggest a role of phosphorylation of the PIP-motif of p68 as a molecular switch that dynamically regulates the functional properties of Pol δ.  相似文献   

15.
Mo J  Liu L  Leon A  Mazloum N  Lee MY 《Biochemistry》2000,39(24):7245-7254
DNA polymerase delta, the key enzyme for eukaryotic chromosomal replication, has been well characterized as consisting of a core enzyme of a 125 kDa catalytic subunit and a smaller 50 kDa subunit. However, less is known about the other proteins that may comprise additional subunits or participate in the macromolecular protein complex that is involved in chromosomal DNA replication. In this study, the properties of calf thymus pol delta preparations isolated by immunoaffinity chromatography were investigated. It is demonstrated for the first time using highly purified preparations that the pol delta heterodimer is associated with other polypeptides in high-molecular weight species that range from 260000 to >500000 in size, as determined by FPLC gel filtration. These preparations are associated with polypeptides of ca. 68-70, 34, 32, and 25 kDa. Similar findings were revealed with glycerol gradient ultracentrifugation. The p68 polypeptide was shown to be a PCNA binding protein by overlay methods with biotinylated PCNA. Protein sequencing of the p68, p34, and p25 polypeptide bands revealed sequences that correspond to the hypothetical protein KIAA0039. KIAA0039 displays a small but significant degree of homology to Schizosaccharomyces pombe Cdc27, which, like Saccharomyces cerevisiae Pol32p, has been described as the third subunit of yeast pol delta. These studies provide evidence that p68 is a subunit of pol delta. In addition, the p68-70 and p32 polypeptides were found to be derived from the 70 and 32 kDa subunits of RPA, respectively.  相似文献   

16.
17.
Replication factor C (RF-C) is a five subunit DNA polymerase (Pol) delta/straightepsilon accessory factor required at the replication fork for loading the essential processivity factor PCNA onto the 3'-ends of nascent DNA strands. Here we describe the genetic analysis of the rfc2 +gene of the fission yeast Schizosaccharomyces pombe encoding a structural homologue of the budding yeast Rfc2p and human hRFC37 proteins. Deletion of the rfc2 + gene from the chromosome is lethal but does not result in the checkpoint-dependent cell cycle arrest seen in cells deleted for the gene encoding PCNA or for those genes encoding subunits of either Pol delta or Pol straightepsilon. Instead, rfc2 Delta cells proceed into mitosis with incompletely replicated DNA, indicating that the DNA replication checkpoint is inactive under these conditions. Taken together with recent results, these observations suggest a simple model in which assembly of the RF-C complex onto the 3'-end of the nascent RNA-DNA primer is the last step required for the establishment of a checkpoint-competent state.  相似文献   

18.
DNA polymerase delta (Pol delta) isolated from Schizosaccharomyces pombe (sp) consists of at least four subunits, Pol3, Cdc1, Cdc27, and Cdm1. We have reconstituted the four-subunit complex by simultaneously expressing these polypeptides in baculovirus-infected insect cells. The properties of the purified cloned spPol delta were identical to the native spPol delta isolated from S. pombe cells. In addition, we also isolated a three-subunit complex containing Pol3, Cdc1, and Cdm1. Both three- and four-subunit complexes required replication factor C and proliferating cell nuclear antigen for DNA replication. However, in the presence of low levels of polymerase complexes, the three-subunit complex was less efficient than the four-subunit complex in supporting DNA replication. The inefficient synthesis of DNA by the three-subunit complex can be remedied by the addition of Cdc27, the subunit missing in the three-subunit complex. Gel filtration analysis demonstrated that the three-subunit complex is a monomer of the heterotrimer (Pol3, Cdc1, and Cdm1) and that the four-subunit complex is a dimer of the heterotetramer (Pol3, Cdc1, Cdc27, and Cdm1), similar to the structure of native spPol delta. We have further shown that Cdc1 and Cdc27 interact to form a heterodimeric complex. Gel filtration studies indicate that the structure of this complex is dimeric. These observations suggest that the Cdc27 subunit may play an important role contributing to the dimerization of Pol delta.  相似文献   

19.
The structure of the multisubunit yeast DNA polymerase epsilon (Pol epsilon) was determined to 20-A resolution using cryo-EM and single-particle image analysis. A globular domain comprising the catalytic Pol2 subunit is flexibly connected to an extended structure formed by subunits Dpb2, Dpb3 and Dpb4. Consistent with the reported involvement of the latter in interaction with nucleic acids, the Dpb portion of the structure directly faces a single cleft in the Pol2 subunit that seems wide enough to accommodate double-stranded DNA. Primer-extension experiments reveal that Pol epsilon processivity requires a minimum length of primer-template duplex that corresponds to the dimensions of the extended Dpb structure. Together, these observations suggest a mechanism for interaction of Pol epsilon with DNA that might explain how the structure of the enzyme contributes to its intrinsic processivity.  相似文献   

20.
J Q Zhou  H He  C K Tan  K M Downey    A G So 《Nucleic acids research》1997,25(6):1094-1099
DNA polymerase delta is usually isolated as a heterodimer composed of a 125 kDa catalytic subunit and a 50 kDa small subunit of unknown function. The enzyme is distributive by itself and requires an accessory protein, the proliferating cell nuclear antigen (PCNA), for highly processive DNA synthesis. We have recently demonstrated that the catalytic subunit of human DNA polymerase delta (p125) expressed in baculovirus-infected insect cells, in contrast to the native heterodimeric calf thymus DNA polymerase delta, is not responsive to stimulation by PCNA. To determine whether the lack of response to PCNA of the recombinant catalytic subunit is due to the absence of the small subunit or to differences in post-translational modification in insect cells versus mammalian cells, we have co-expressed the two subunits of human DNA polymerase delta in insect cells. We have demonstrated that co-expression of the catalytic and small subunits of human DNA polymerase delta results in formation of a stable, fully functional heterodimer, that the recombinant heterodimer, similar to native heterodimer, is markedly stimulated (40- to 50-fold) by PCNA and that the increase in activity seen in the presence of PCNA is the result of an increase in processivity. These data establish that the 50 kDa subunit is essential for functional interaction of DNA polymerase delta with PCNA and for highly processive DNA synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号