首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The present study investigates the possible effects of chronic aluminium exposure on the various aspects of calcium homeostasis in the primate central nervous system. Aluminium administration caused a marked decline in the activity of Ca2+ ATPase in the monkey brain. The total calcium content was also significantly raised following aluminium exposure. Concomittant to the increase in the calcium content, the levels of lipid peroxidation were also augmented in the aluminium treated animals, thereby further accentuating the aluminium induced neuronal damage. In addition, aluminium had an inhibitory effect on the depolarization induced 45Ca2+ uptake via the voltage operated channels. The results presented herein, indicate that the toxic effects of aluminium could be mediated through modifications in the intracellular calcium homeostasis with resultant altered neuronal function.  相似文献   

4.
Neurodegenerative diseases such as Alzheimer’s and Parkinson’s currently affect ∼25 million people worldwide. The global incidence of traumatic brain injury (TBI) is estimated at ∼70 million/year. Both neurodegenerative diseases and TBI remain without effective treatments. We are utilizing adult Drosophila melanogaster to investigate the mechanisms of brain regeneration with the long-term goal of identifying targets for neural regenerative therapies. We specifically focused on neurogenesis, i.e., the generation of new cells, as opposed to the regrowth of specific subcellular structures such as axons. Like mammals, Drosophila have few proliferating cells in the adult brain. Nonetheless, within 24 hours of a penetrating traumatic brain injury (PTBI) to the central brain, there is a significant increase in the number of proliferating cells. We subsequently detect both new glia and new neurons and the formation of new axon tracts that target appropriate brain regions. Glial cells divide rapidly upon injury to give rise to new glial cells. Other cells near the injury site upregulate neural progenitor genes including asense and deadpan and later give rise to the new neurons. Locomotor abnormalities observed after PTBI are reversed within 2 weeks of injury, supporting the idea that there is functional recovery. Together, these data indicate that adult Drosophila brains are capable of neuronal repair. We anticipate that this paradigm will facilitate the dissection of the mechanisms of neural regeneration and that these processes will be relevant to human brain repair.  相似文献   

5.
6.
Metabolic signals are used for imaging and spectroscopic studies of brain function and disease and to elucidate the cellular basis of neuroenergetics. The major fuel for activated neurons and the models for neuron–astrocyte interactions have been controversial because discordant results are obtained in different experimental systems, some of which do not correspond to adult brain. In rats, the infrastructure to support the high energetic demands of adult brain is acquired during postnatal development and matures after weaning. The brain''s capacity to supply and metabolize glucose and oxygen exceeds demand over a wide range of rates, and the hyperaemic response to functional activation is rapid. Oxidative metabolism provides most ATP, but glycolysis is frequently preferentially up-regulated during activation. Underestimation of glucose utilization rates with labelled glucose arises from increased lactate production, lactate diffusion via transporters and astrocytic gap junctions, and lactate release to blood and perivascular drainage. Increased pentose shunt pathway flux also causes label loss from C1 of glucose. Glucose analogues are used to assay cellular activities, but interpretation of results is uncertain due to insufficient characterization of transport and phosphorylation kinetics. Brain activation in subjects with low blood-lactate levels causes a brain-to-blood lactate gradient, with rapid lactate release. In contrast, lactate flooding of brain during physical activity or infusion provides an opportunistic, supplemental fuel. Available evidence indicates that lactate shuttling coupled to its local oxidation during activation is a small fraction of glucose oxidation. Developmental, experimental, and physiological context is critical for interpretation of metabolic studies in terms of theoretical models.  相似文献   

7.
Abstract The dualistic activities of the amyloid beta (Abeta) peptide as a pro-oxidant and ubiquitous constituent of amyloid deposits in Alzheimer's disease plaques and as an antioxidant of purported physiological function has been suggested but the mechanisms are far from being understood. In this report we measure several oxidative stress parameters and signaling cascades in brains of fetal rats subjected to global ischemia in order to evaluate the putative bifunctional properties of the Abeta(1-40) peptide. Intraperitoneal injection of 6 microg Abeta(1-40) into 18-days-old rat fetuses (approximately 3 g body weight) resulted after 24 h in the appearance of the peptide in various fetal organs including brain where it enhanced the levels of glutathione (GSH), glutathione reductase, glutathione peroxidase, and stimulated the levels of pro-survival signaling activities such as Akt serine/threonine kinase, extracellular signal-regulated kinase (ERK) and protein kinase C enzymes. Moreover, pretreatment with Abeta(1-40) reversed the consequences of a transient hypovolemic/hypotensive oxidative stress by restoring GSH levels via its recycling enzymes and by lowering the production of lipid peroxides presumably by activating the aforementioned pro-survival signaling cascades. It also caused a reduction in the number of DAPI-enhanced reactive cells and a decrease in p38 kinase phosphorylation and caspase-9 and -3 activity. These data suggest that pre-exposure to Abeta(1-40) stimulates fetal tolerance to ischemia via regulation of GSH metabolism and as such may be considered as neuroprotective.  相似文献   

8.
Functional magnetic resonance spectroscopy (fMRS) allows the non-invasive measurement of metabolite concentrations in the human brain, including changes induced by variations in neurotransmission activity. However, the limited spatial and temporal resolution of fMRS does not allow specific measurements of metabolites in different cell types. Thus, the analysis of fMRS data in the context of compartmentalized metabolism requires the formulation and application of mathematical models. In the present study we utilized the mathematical model introduced by Simpson et al . (2007) to gain insights into compartmentalized metabolism in vivo from the fMRS data obtained in humans at ultra high magnetic field by Mangia et al . (2007a) . This model simulates brain glucose and lactate levels in a theoretical cortical slice. Using experimentally determined concentrations and catalytic activities for the respective transporter proteins, we calculate inflow and export of glucose and lactate in endothelium, astrocytes, and neurons. We then vary neuronal and astrocytic glucose and lactate utilization capacities until close correspondence is observed between in vivo and simulated glucose and lactate levels. The results of the simulations indicate that, when literature values of glucose transport capacity are utilized, the fMRS data are consistent with export of lactate by neurons and import of lactate by astrocytes, a mechanism that can be referred to as a neuron-to-astrocyte lactate shuttle. A shuttle of lactate from astrocytes to neurons could be simulated, but this required the astrocytic glucose transport capacity to be increased by 12-fold, and required that neurons not respond to activation with increased glycolysis, two conditions that are not supported by current literature.  相似文献   

9.

Background

Most neurodegenerative diseases are associated with mitochondrial dysfunction. In humans, mutations in mitochondrial genes result in a range of phenotypic outcomes which do not correlate well with the underlying genetic cause. Other neurodegenerative diseases are caused by mutations that affect the function and trafficking of lysosomes, endosomes and autophagosomes. Many of the complexities of these human diseases can be avoided by studying them in the simple eukaryotic model Dictyostelium discoideum.

Scope of review

This review describes research using Dictyostelium to study cytopathological pathways underlying a variety of neurodegenerative diseases including mitochondrial, lysosomal and vesicle trafficking disorders.

Major conclusions

Generalised mitochondrial respiratory deficiencies in Dictyostelium produce a consistent pattern of defective phenotypes that are caused by chronic activation of a cellular energy sensor AMPK (AMP-activated protein kinase) and not ATP deficiency per se. Surprisingly, when individual subunits of Complex I are knocked out, both AMPK-dependent and AMPK-independent, subunit-specific phenotypes are observed. Many nonmitochondrial proteins associated with neurological disorders have homologues in Dictyostelium and are associated with the function and trafficking of lysosomes and endosomes. Conversely, some genes associated with neurodegenerative disorders do not have homologues in Dictyostelium and this provides a unique avenue for studying these mutated proteins in the absence of endogeneous protein.

General significance

Using the Dictyostelium model we have gained insights into the sublethal cytopathological pathways whose dysregulation contributes to phenotypic outcomes in neurodegenerative disease. This work is beginning to distinguish correlation, cause and effect in the complex network of cross talk between the various organelles involved. This article is part of a Special Issue entitled Frontiers of Mitochondrial Research  相似文献   

10.
An adequate and timely production of ATP by brain cells is of cardinal importance to support the major energetic cost of the rapid processing of information via synaptic and action potentials. Recently, evidence has been accumulated to support the view that the regulation of brain energy metabolism is under the control of an intimate dialogue between astrocytes and neurons. In vitro studies on cultured astrocytes and in vivo studies on rodents have provided evidence that glutamate and Na(+) uptake in astrocytes is a key triggering signal regulating glucose use in the brain. With the advent of NMR spectroscopy, it has been possible to provide experimental evidence to show that energy consumption is mainly devoted to glutamatergic neurotransmission and that glutamate-glutamine cycling is coupled in a approximately 1 : 1 molar stoichiometry to glucose oxidation, at least in the cerebral cortex. This improved understanding of neuron-astrocyte metabolic interactions offers the potential for developing novel therapeutic strategies for many neurological disorders that include a metabolic deficit.  相似文献   

11.
In a previous communication we reported that glucose deprivation from KHRB medium resulted in a marked stimulation of Ca2+ uptake by brain tissue, suggesting a relationship between glucose and Ca2+ homeostasis in brain tissue [17]. Experiments were carried out to investigate the significance of glucose in Ca2+ transport in brain cells. The replacement of glucose with either D-methylglucoside or 2-deoxyglucose, non-metabolizable analogues of glucose, resulted in stimulation of Ca2+ uptake just as by glucose deprivation. These data show that glucose metabolism rather than glucose transfer was necessary to stimulate Ca2+ uptake in brain tissue. Inhibition of glucose metabolism with either NaF, NaCN, or iodoacetate resulted in stimulation of Ca2+ uptake similar to that produced by glucose deprivation. These results lend further support for the concept that glucose metabolism is essential for Ca2+ homeostasis in brain. Anoxia promotes glucose metabolism through glycolytic pathway to keep up with the demand for ATP by cellular processes (the Pasteur effect). Incubation of brain slices under nitrogen gas did not alter Ca2+ uptake by brain tissue, as did glucose deprivation and the inhibitors of glucose metabolism. We conclude that glucose metabolism resulting in the synthesis of ATP is essential for Ca2+ homeostasis in brain. Verapamil and nifedipine which block voltage-gated Ca2+ channels, did not alter Ca2+ uptake stimulated by glucose deprivation, indicating that glucose deprivation-enhanced Ca2+ uptake was not mediated by Ca2+ channels. Tetrodotoxin which specifically blocks Na+ channels, abolished Ca2+ uptake enhanced by glucose deprivation, but had no effect on Ca2+ uptake in presence of glucose (controls). These results suggest that stimulation of Ca2+ uptake by glucose deprivation may be related to Na+ transfer via Na-Ca exchange in brain.  相似文献   

12.
Cholesterol is essential for neuronal physiology, both during development and in the adult life: as a major component of cell membranes and precursor of steroid hormones, it contributes to the regulation of ion permeability, cell shape, cell–cell interaction, and transmembrane signaling. Consistently, hereditary diseases with mutations in cholesterol‐related genes result in impaired brain function during early life. In addition, defects in brain cholesterol metabolism may contribute to neurological syndromes, such as Alzheimer's disease (AD), Huntington's disease (HD), and Parkinson's disease (PD), and even to the cognitive deficits typical of the old age. In these cases, brain cholesterol defects may be secondary to disease‐causing elements and contribute to the functional deficits by altering synaptic functions. In the first part of this review, we will describe hereditary and non‐hereditary causes of cholesterol dyshomeostasis and the relationship to brain diseases. In the second part, we will focus on the mechanisms by which perturbation of cholesterol metabolism can affect synaptic function.  相似文献   

13.
Mutations in copper/zinc superoxide dismutase (SOD1) account for 10-20% of a familial form of amyotrophic lateral sclerosis (ALS). A common feature of SOD1 mutants is abnormal aggregation of the aberrant SOD1 in neurons and glia. We now report that in ALS transgenic mouse models the constitutively expressed heat shock protein 70 (Hsp70) is mislocalized into aggregates together with mutant SOD1 and ubiquitin. Forcing increased synthesis of Hsp70 ameliorates both aggregate formation and toxicity in primary motor neurons in culture. However, chronic increase in an inducible form of Hsp70 to about 10-fold its normal level is shown here not to affect disease course or pathology developed in mice from accumulation of any of three familial ALS causing SOD1 mutants with different underlying biochemical characteristics. Therefore, increasing Hsp70 to a level that is protective in mouse models of acute ischemic insult and selected neurodegenerative disorders is not sufficient to ameliorate mutant SOD1-mediated toxicity.  相似文献   

14.
The expression of clusterin has been shown to be elevated in several models of experimentally induced programmed cell death and in association with a number of neurodegenerative conditions. In order to test whether this protein is expressed in neurons during development, the expression of clusterin was examined in the developing nervous system, using immunohistochemistry and mRNA analysis. Clusterin expression was observed in the earliest neurons of the cortical plate on embryonic day (E) 12. Thereafter, the intensity of clusterin staining continued to increase in an age-dependent manner, with the greatest intensity of staining being found in the postnatal mature brain. Virtually all neurons were clusterin-positive and there was no evidence for the appearance of clusterin-positive cells specifically during epochs of programmed neuronal death in the embryo. This study suggests that clusterin has a role in neuronal maturation and it is unlikely to be associated exclusively with neuronal cell death. © 1993 John Wiley & Sons, Inc.  相似文献   

15.
The temporal relationship between cerebral electro-physiological activities, higher brain functions and brain energy metabolism is reviewed. The duration of action potentials and transmission through glutamate and GABA are most often less than 5 ms. Subjects may perform complex psycho-physiological tasks within 50 to 200 ms, and perception of conscious experience requires 0.5 to 2 s. Activation of cerebral oxygen consumption starts after at least 100 ms and increases of local blood flow become maximal after about 1 s. Current imaging technologies are unable to detect rapid physiological brain functions. We introduce the concepts of potential and metabolic brain energy to distinguish trans-membrane gradients of ions or neurotransmitters and the capacity to generate energy from intra- or extra-cerebral substrates, respectively. Higher brain functions, such as memory retrieval, speaking, consciousness and self-consciousness are so fast that their execution depends primarily on fast neurotransmission (in the millisecond range) and action-potentials. In other words: brain functioning requires primarily maximal potential energy. Metabolic brain energy is necessary to restore and maintain the potential energy.  相似文献   

16.
Pyruvate dehydrogenase complex (PDC) deficiency is an inborn metabolic disorder associated with a variety of neurologic abnormalities. This report describes the development and initial characterization of a novel murine model system in which PDC deficiency has been introduced specifically into the developing nervous system. The absence of liveborn male and a roughly 50% reduction in female offspring following induction of the X-linked mutation indicate that extensive deficiency of PDC in the nervous system leads to pre-natal lethality. Brain tissue from surviving females at post-natal days 15 and 35 was shown to have approximately 75% of wild-type PDC activity, suggesting that a threshold of enzyme activity exists for post-natal survival. Detailed histological analyses of brain tissue revealed structural defects such as disordered neuronal cytoarchitecture and neuropil fibers in grey matter, and reduced size of bundles and disorganization of fibers in white matter. Many of the histologic abnormalities resemble those found in human female patients who carry mutations in the X-linked ortholog. These findings demonstrate a requirement for PDC activity within the nervous system for survival in utero and suggest that impaired pyruvate metabolism in the developing brain can affect neuronal migration, axonal growth and cell-cell interactions.  相似文献   

17.
MNDs (motorneuron diseases) are neurodegenerative disorders in which motorneurons located in the motor cortex, in the brainstem and in the spinal cord are affected. These diseases in their inherited or sporadic forms are mainly characterized by motor dysfunctions, occasionally associated with cognitive and behavioural alterations. Although these diseases show high variability in onset, progression and clinical symptoms, they share common pathological features, and motorneuronal loss invariably leads to muscle weakness and atrophy. One of the most relevant aspect of these disorders is the occurrence of defects in axonal transport, which have been postulated to be either a direct cause, or a consequence, of motorneuron degeneration. In fact, due to their peculiar morphology and high energetic metabolism, motorneurons deeply rely on efficient axonal transport processes. Dysfunction of axonal transport is known to adversely affect motorneuronal metabolism, inducing progressive degeneration and cell death. In this regard, the understanding of the fine mechanisms at the basis of the axonal transport process and of their possible alterations may help shed light on MND pathological processes. In the present review, we will summarize what is currently known about the alterations of axonal transport found to be either causative or a consequence of MNDs.  相似文献   

18.
19.
肿瘤的发生发展是一个十分复杂的生物学过程。随着研究的深入,人们逐渐认识到线粒体不仅是重要的细胞器,而且在肿瘤的发生发展中也起着重要的作用,与肿瘤的能量代谢异常、活性氧自由基升高、组织浸润和转移能力、细胞死亡抵抗等密切相关。就近年来线粒体与肿瘤发生发展的关系研究做一综述。  相似文献   

20.
内源性神经干细胞与脑老化的治疗   总被引:1,自引:0,他引:1  
近十几年研究发现成年人脑神经元可以再生,使人们重新认识老年脑神经细胞的可塑性,它为脑损伤的修复带来新的希望。最新研究表明,神经再生可被调控,是一种新的修复机制。这使得利用内源性神经干细胞治疗老龄相关的神经退行性疾病成为可能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号