首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Tumor suppression by p53 in the absence of Atm   总被引:1,自引:0,他引:1  
Oncogenes can induce p53 through a signaling pathway involving p19/Arf. It was recently proposed that oncogenes can also induce DNA damage, and this can induce p53 through the Atm DNA damage pathway. To assess the relative roles of Atm, Arf, and p53 in the suppression of Ras-driven tumors, we examined susceptibility to skin carcinogenesis in 7,12-dimethylbenz(a)anthracene/12-O-tetradecanoylphorbol-13-acetate (TPA)-treated Atm- and p53-deficient mice and compared these results to previous studies on Arf-deficient mice. Mice with epidermal-specific deletion of p53 showed increased papilloma number and progression to malignant invasive carcinomas compared with wild-type littermates. In contrast, Atm-deficient mice showed no increase in papilloma number, growth, or malignant progression. gamma-H2AX and p53 levels were increased in both Atm(+/+) and Atm(-/-) papillomas, whereas Arf(-/-) papillomas showed much lower p53 expression. Thus, although there is evidence of DNA damage, signaling through Arf seems to regulate p53 in these Ras-driven tumors. In spontaneous and radiation-induced lymphoma models, tumor latency was accelerated in Atm(-/-)p53(-/-) compound mutant mice compared with the single mutant Atm(-/-) or p53(-/-) mice, indicating cooperation between loss of Atm and loss of p53. Although p53-mediated apoptosis was impaired in irradiated Atm(-/-) lymphocytes, p53 loss was still selected for during lymphomagenesis in Atm(-/-) mice. In conclusion, in these models of oncogene- or DNA damage-induced tumors, p53 retains tumor suppressor activity in the absence of Atm.  相似文献   

3.
Mammalian spermatogenesis is maintained by stem cell capacity within undifferentiated spermatogonial subpopulation. Here, using a combination of surface markers, we describe a purification method for undifferentiated spermatogonia. Flow cytometric analysis revealed that this population is composed of Plzf-positive cells and exhibits quiescence and the side population phenotype, fulfilling general stem cell criteria. We then applied this method to analyze undifferentiated spermatogonia and stem cell activity of Atm(-/-) mice. Atm(-/-) testis shows progressive depletion of undifferentiated spermatogonia accompanied by cell-cycle arrest. In Atm(-/-) undifferentiated spermatogonia, a self-renewal defect was observed in vitro and in vivo. Accumulation of DNA damage and activation of the p19(Arf)-p53-p21(Cip1/Waf1) pathway were observed in Atm(-/-) undifferentiated spermatogonia. Moreover, suppression of p21(Cip1/Waf1) in an Atm(-/-) background restored transplantation ability of undifferentiated spermatogonia, indicating that ATM plays an essential role in maintenance of undifferentiated spermatogonia and their stem cell capacity by suppressing DNA damage-induced cell-cycle arrest.  相似文献   

4.
5.
ATM, the protein product of the gene mutated in the human autosomal recessive disorder ataxia telangiectasia, is involved in detection of double strand breaks (DSBs) and is a key component of the damage surveillance network of cell cycle proteins. In somatic cells ATM phosphorylates many other proteins including p53, an important regulator of cell cycle control. Mice deficient for Atm are male sterile with arrest and apoptosis occurring at testis epithelial stage IV, which in normal spermatocytes corresponds to mid-pachynema. Unlike the situation in somatic cells, we find no evidence that disruption of the Trp53 (p53) gene, or its down-stream target Cdkn1a (p21/Cip1) results in even a partial rescue of the Atm defect.  相似文献   

6.
Arf/p53 pathway protects the cells against DNA damage induced by acute stress. This characteristic is the responsible for its tumor suppressor activity. Moreover, it regulates the chronic type of stress associated with aging. This is the basis of its anti‐aging activity. Indeed, increased gene dosage of Arf/p53 displays elongated longevity and delayed aging. At a cellular level, it has been recently shown that increased dosage of Arf/p53 delays age‐associated stem cell exhaustion and the subsequent decline in tissue homeostasis and regeneration. However, p53 can also promote aging if constitutively activated. In this context, p53 reduces tissue regeneration, which correlates with premature exhaustion of stem cells. We discuss here the current evidence linking the Arf/p53 pathway to the processes of aging and cancer through stem cell regulation.  相似文献   

7.
Both p53 and ATM are checkpoint regulators with roles in genetic stabilization and cancer susceptibility. ATM appears to function in the same DNA damage checkpoint pathway as p53. However, ATM's role in p53-dependent apoptosis and tumor suppression in response to cell cycle dysregulation is unknown. In this study, we tested the role of murine ataxia telangiectasia protein (Atm) in a transgenic mouse brain tumor model in which p53-mediated apoptosis results in tumor suppression. These p53-mediated activities are induced by tissue-specific inactivation of pRb family proteins by a truncated simian virus 40 large T antigen in brain epithelium. We show that p53-dependent apoptosis, transactivation, and tumor suppression are unaffected by Atm deficiency, suggesting that signaling in the DNA damage pathway is distinct from that in the oncogene-induced pathway. In addition, we show that Atm deficiency has no overall effect on tumor growth and progression in this model.  相似文献   

8.
The defining characteristic of recessive disorders is the absence of disease in heterozygous carriers of the mutant alleles. However, it has been recognized that recessive carriers may differ from noncarriers in some phenotypes. Here, we studied ataxia telangiectasia (AT), a classical recessive disorder caused by mutations in the ataxia telangiectasia mutated (ATM) gene. We compared the gene and microRNA expression phenotypes of noncarriers, AT carriers who have one copy of the ATM mutations, and AT patients with two copies of ATM mutations. We found that some phenotypes are more similar between noncarriers and AT carriers compared to AT patients, as expected for a recessive disorder. However, for some expression phenotypes, AT carriers are more similar to the patients than to the noncarriers. Analysis of one of these expression phenotypes, TNFSF4 level, allowed us to uncover a regulatory pathway where ATM regulates TNFSF4 expression through MIRN125B (also known as miR-125b or miR125b) [corrected] In AT carriers and AT patients, this pathway is disrupted. As a result, the level of MIRN125B is lower and the level of its target gene, TNFSF4, is higher than in noncarriers. A decreased level of MIRN125B is associated with breast cancer, and an elevated level of TNFSF4 is associated with atherosclerosis. Thus, our findings provide a mechanistic suggestion for the increased risk of breast cancer and heart disease in AT carriers. By integrating molecular and computational analyses of gene and microRNA expression, we show the complex consequences of a human gene mutation.  相似文献   

9.
CHEK2 encodes a serine/threonine-protein kinase which plays a critical role in DNA damage signaling pathways. CHEK2 directly phosphorylates and regulates the functions of p53 and BRCA1. Most women with breast and/or ovarian cancer are not carriers of mutant BRCA1 or BRCA2. Multiple studies have shown that a CHEK2*1100delC confers about a two-fold increased risk of breast cancer in unselected females and a tenfold increase in males. Moreover, studies have shown that first-degree relatives of bilateral breast cancer cases who carried the CHEK2*1100delC allele had an eight-fold increased risk of breast cancer. It has been suggested that CHEK2 functions as a low-penetrance susceptibility gene for cancers and multiplies the risks associated with other gene(s) to increase cancer risk. The main goal of this study was to evaluate and to compare the role of truncating mutations, splice junction mutations and rare missense substitutions in breast cancer susceptibility gene CHEK2. Present study was performed on 140 individuals including 70 breast cancer patients both with and without family history and 70 normal individuals. Written consent was obtained and 3 ml intravenous blood was drawn from all the subjects. DNA was extracted from all the samples through inorganic method published already. Primers were synthesized for all the 14 exons of CHEK2 gene. Coding and adjacent intronic sequences of CHEK2 gene were amplified and sequenced. Two genetic variants (p.H371Y, p.D438Y) were found in exon 10 and exon 11 of gene CHEK2 which were not found in any of the 70 control individuals from same geographical area and ethnic group. The genetic variant c.1312G>T (p.D438Y) identified in a patient with a family history of breast cancer. To our knowledge, this is first mutation scanning study of gene CHEK2 from Balochistan population.  相似文献   

10.
CHEK2 (previously known as "CHK2") is a cell-cycle-checkpoint kinase that phosphorylates p53 and BRCA1 in response to DNA damage. A protein-truncating mutation, 1100delC in exon 10, which abolishes the kinase function of CHEK2, has been found in families with Li-Fraumeni syndrome (LFS) and in those with a cancer phenotype that is suggestive of LFS, including breast cancer. In the present study, we found that the frequency of 1100delC was 2.0% among an unselected population-based cohort of 1,035 patients with breast cancer. This was slightly, but not significantly (P=.182), higher than the 1.4% frequency found among 1,885 population control subjects. However, a significantly elevated frequency was found among those 358 patients with a positive family history (11/358 [3.1%]; odds ratio [OR] 2.27; 95% confidence interval [CI] 1.11-4.63; P=.021, compared with population controls). Furthermore, patients with bilateral breast cancer were sixfold more likely to be 1100delC carriers than were patients with unilateral cancer (95% CI 1.87-20.32; P=.007). Analysis of the 1100delC variant in an independent set of 507 patients with familial breast cancer with no BRCA1 and BRCA2 mutations confirmed a significantly elevated frequency of 1100delC (28/507 [5.5%]; OR 4.2; 95% CI 2.4-7.2; P=.0002), compared with controls, with a high frequency also seen in patients with only a single affected first-degree relative (18/291 [6.2%]). Finally, tissue microarray analysis indicated that breast tumors from patients with 1100delC mutations show reduced CHEK2 immunostaining. The results suggest that CHEK2 acts as a low-penetrance tumor-suppressor gene in breast cancer and that it makes a significant contribution to familial clustering of breast cancer-including families with only two affected relatives, which are more common than families that include larger numbers of affected women.  相似文献   

11.
12.
Endoplasmic reticulum stress (ER-stress) is associated with ataxia telangiectasia mutated (ATM) gene. We present here conclusive data showing that ATM blocks ER-stress induced by tunicamycin or ionizing radiation (IR). X-box protein-1 (XBP-1) splicing, GRP78 expression and caspase-12 activation were increased by tunicamycin or IR in Atm-deficient AT5BIVA fibroblasts. Activation of caspase-12 and caspase-3 by tunicamycin was significantly reduced in cells transfected with wild-type Atm (AT5BIVA/wtATM). Atm knockdown by siRNA, however, noticeably elevated ER-stress and chemosensitivity to tunicamycin. In summary, we present substantial data demonstrating that ATM blocks the ER stress signaling associated with cancer cell proliferation.  相似文献   

13.
Centrosome amplification has been proposed to contribute to the development of aneuploidy and genome instability. Here, we show that Ataxia-Telangiectasia Mutated (ATM) is localized to the centrosome and co-purified with gamma-tubulin. The importance of ATM in centrosome duplication is demonstrated in Atm-deficient primary mouse embryonic fibroblasts that display centrosome amplification. Interestingly, centrosome amplification was not observed in tumor cell lines derived from Atm and p21 double deficient mouse. Our results also indicate that both p53 and p21 operate in the same pathway as ATM in regulating centrosome biogenesis. Finally, a potential role of ATM in spindle checkpoint regulation is demonstrated by which ATM protein is activated by mitotic stress. These results suggest a role of ATM in spindle checkpoint regulation and indicate that ATM suppresses genome instability and cellular transformation by regulating centrosome biogenesis.  相似文献   

14.
The ataxia telangiectasia mutant (ATM) protein is an intrinsic part of the cell cycle machinery that surveys genomic integrity and responses to genotoxic insult. Individuals with ataxia telangiectasia as well as Atm(-/-) mice are predisposed to cancer and are infertile due to spermatogenesis disruption during first meiotic prophase. Atm(-/-) spermatocytes frequently display aberrant synapsis and clustered telomeres (bouquet topology). Here, we used telomere fluorescent in situ hybridization and immunofluorescence (IF) staining of SCP3 and testes-specific histone H1 (H1t) to spermatocytes of Atm- and Atm-p53-deficient mice and investigated whether gonadal atrophy in Atm-null mice is associated with stalling of telomere motility in meiotic prophase. SCP3-H1t IF revealed that most Atm(-/-) p53(-/-) spermatocytes degenerated during late zygotene, while a few progressed to pachytene and diplotene and some even beyond metaphase II, as indicated by the presence of a few round spermatids. In Atm(-/-) p53(-/-) meiosis, the frequency of spermatocytes I with bouquet topology was elevated 72-fold. Bouquet spermatocytes with clustered telomeres were generally void of H1t signals, while mid-late pachytene and diplotene Atm(-/-) p53(-/-) spermatocytes displayed expression of H1t and showed telomeres dispersed over the nuclear periphery. Thus, it appears that meiotic telomere movements occur independently of ATM signaling. Atm inactivation more likely leads to accumulation of spermatocytes I with bouquet topology by slowing progression through initial stages of first meiotic prophase and an ensuing arrest and demise of spermatocytes I. Sertoli cells (SECs), which contribute to faithful spermatogenesis, in the Atm mutants were found to frequently display numerous heterochromatin and telomere clusters-a nuclear topology which resembles that of immature SECs. However, Atm(-/-) SECs exhibited a mature vimentin and cytokeratin 8 intermediate filament expression signature. Upon IF with ATM antibodies, we observed ATM signals throughout the nuclei of human and mouse SECs, spermatocytes I, and haploid round spermatids. ATM but not H1t was absent from elongating spermatid nuclei. Thus, ATM appears to be removed from spermatid nuclei prior to the occurrence of DNA nicks which emanate as a consequence of nucleoprotamine formation.  相似文献   

15.
The proteins encoded by the Ink4/Arf locus, p16Ink4a, p19Arf and p15Ink4b are major tumour suppressors that oppose aberrant mitogenic signals. The expression levels of the locus are progressively increased during aging and genome-wide association studies have linked the locus to a number of aging-associated diseases and frailty in humans. However, direct measurement of the global impact of the Ink4/Arf locus on organismal aging and longevity was lacking. In this work, we have examined the fertility, cancer susceptibility, aging and longevity of mice genetically modified to carry one ( Ink4/Arf -tg) or two ( Ink4/Arf -tg/tg) intact additional copies of the locus. First, increased gene dosage of Ink4/Arf impairs the production of male germ cells, and in the case of Ink4/Arf -tg/tg mice results in a Sertoli cell-only-like syndrome and a complete absence of sperm. Regarding cancer, there is a lower incidence of aging-associated cancer proportional to the Ink4/Arf gene dosage. Interestingly, increased Ink4/Arf gene dosage resulted in lower scores in aging markers and in extended median longevity. The increased survival was also observed in cancer-free mice indicating that cancer protection and delayed aging are separable activities of the Ink4/Arf locus. In contrast to these results, mice carrying one or two additional copies of the p53 gene ( p53 -tg and p53 -tg/tg) had a normal longevity despite their increased cancer protection. We conclude that the Ink4/Arf locus has a global anti-aging effect, probably by favouring quiescence and preventing unnecessary proliferation.  相似文献   

16.
17.
18.
Germ-line p53 mutations in 15 families with Li-Fraumeni syndrome.   总被引:4,自引:0,他引:4       下载免费PDF全文
Germ-line mutations of the tumor-suppressor gene p53 have been observed in some families with the Li-Fraumeni syndrome (LFS), a familial cancer syndrome in which affected relatives develop a diverse set of early-onset malignancies including breast carcinoma, sarcomas, and brain tumors. The analysis of the p53 gene in LFS families has been limited, in most studies to date, to the region between exon 5 and exon 9. In order to determine the frequency and distribution of germ-line p53 mutations in LFS, we sequenced the 10 coding exons of the p53 gene in lymphocytes and fibroblast cell lines derived from 15 families with the syndrome. Germ-line mutations were observed in eight families. Six mutations were missense mutations located between exons 5 and 8. One mutation was a nonsense mutation in exon 6, and one mutation was a splicing mutation in intron 4, generating aberrant shorter p53 RNA(s). In three families, a mutation of the p53 gene was observed in the fibroblast cell line derived from the proband. However, the mutation was not found in affected relatives in two families and in the blood from the one individual, indicating that the mutation probably occurred during cell culture in vitro. In four families, no mutation was observed. This study indicates that germ-line p53 mutations in LFS are mostly located between exons 5 and 8 and that approximately 50% of patients with LFS have no germ-line mutations in the coding region of the p53 gene.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Phosphorylation at murine Serine 18 (human Serine 15) is a critical regulatory process for the tumor suppressor function of p53. p53Ser18 residue is a substrate for ataxia-telangiectasia mutated (ATM) and ATM-related (ATR) protein kinases. Studies of mice with a germ-line mutation that replaces Ser18 with Ala (p53(S18A) mice) have demonstrated that loss of phosphorylation of p53Ser18 leads to the development of tumors, including lymphomas, fibrosarcomas, leukemia and leiomyosarcomas. The predominant lymphoma is B-cell lymphoma, which is in contrast to the lymphomas observed in Atm(-/-) animals. This observation and the fact that multiple kinases phosphorylate p53Ser18 suggest Atm-independent tumor suppressive functions of p53Ser18. Therefore, in order to examine p53Ser18 function in relationship to ATM, we analyzed the lifespan and tumorigenesis of mice with combined mutations in p53Ser18 and Atm. Surprisingly, we observed no cooperation in survival and tumorigenesis in compound p53(S18A) and Atm(-/-) animals. However, we observed embryonic lethality in the compound mutant animals. In addition, the homozygous p53Ser18 mutant allele impacted the weight of Atm(-/-) animals. These studies examine the genetic interaction of p53Ser18 and Atm in vivo. Furthermore, these studies demonstrate a role of p53Ser18 in regulating embryonic survival and motor coordination.  相似文献   

20.
In many tumor systems, analysis of cells for loss of heterozygosity (LOH) has helped to clarify the role of tumor suppressor genes in oncogenesis. Two important tumor suppressor genes, p53 and the Ink4a/Arf locus, play central roles in the multistep process of Abelson murine leukemia virus (Ab-MLV) transformation. p53 and the p53 regulatory protein, p19Arf, are required for the apoptotic crisis that characterizes the progression of primary transformed pre-B cells to fully malignant cell lines. To search for other tumor suppressor genes which may be involved in the Ab-MLV transformation process, we used endogenous proviral markers and simple-sequence length polymorphism analysis to screen Abelson virus-transformed pre-B cells for evidence of LOH. Our survey reinforces the role of the p53-p19 regulatory pathway in transformation; 6 of 58 cell lines tested had lost sequences on mouse chromosome 4, including the Ink4a/Arf locus. Consistent with this pattern, a high frequency of primary pre-B-cell transformants derived from Ink4a/Arf +/- mice became established cell lines. In addition, half of them retained the single copy of the locus when the transformation process was complete. These data demonstrate that a single copy of the Ink4a/Arf locus is not sufficient to fully mediate the effects of these genes on transformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号