首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The checkpoint kinases ATM and ATR are redundantly required for maintenance of stable telomeres in diverse organisms, including budding and fission yeasts, Arabidopsis, Drosophila, and mammals. However, the molecular basis for telomere instability in cells lacking ATM and ATR has not yet been elucidated fully in organisms that utilize both the telomere protection complex shelterin and telomerase to maintain telomeres, such as fission yeast and humans. Here, we demonstrate by quantitative chromatin immunoprecipitation (ChIP) assays that simultaneous loss of Tel1ATM and Rad3ATR kinases leads to a defect in recruitment of telomerase to telomeres, reduced binding of the shelterin complex subunits Ccq1 and Tpz1, and increased binding of RPA and homologous recombination repair factors to telomeres. Moreover, we show that interaction between Tpz1-Ccq1 and telomerase, thought to be important for telomerase recruitment to telomeres, is disrupted in tel1Δ rad3Δ cells. Thus, Tel1ATM and Rad3ATR are redundantly required for both protection of telomeres against recombination and promotion of telomerase recruitment. Based on our current findings, we propose the existence of a regulatory loop between Tel1ATM/Rad3ATR kinases and Tpz1-Ccq1 to ensure proper protection and maintenance of telomeres in fission yeast.  相似文献   

2.
Nakamura TM  Moser BA  Russell P 《Genetics》2002,161(4):1437-1452
Telomeres, the ends of linear chromosomes, are DNA double-strand ends that do not trigger a cell cycle arrest and yet require checkpoint and DNA repair proteins for maintenance. Genetic and biochemical studies in the fission yeast Schizosaccharomyces pombe were undertaken to understand how checkpoint and DNA repair proteins contribute to telomere maintenance. On the basis of telomere lengths of mutant combinations of various checkpoint-related proteins (Rad1, Rad3, Rad9, Rad17, Rad26, Hus1, Crb2, Chk1, Cds1), Tel1, a telomere-binding protein (Taz1), and DNA repair proteins (Ku70, Rad32), we conclude that Rad3/Rad26 and Tel1/Rad32 represent two pathways required to maintain telomeres and prevent chromosome circularization. Rad1/Rad9/Hus1/Rad17 and Ku70 are two additional epistasis groups, which act in the Rad3/Rad26 pathway. However, Rad3/Rad26 must have additional target(s), as cells lacking Tel1/Rad32, Rad1/Rad9/Hus1/Rad17, and Ku70 groups did not circularize chromosomes. Cells lacking Rad3/Rad26 and Tel1/Rad32 senesced faster than a telomerase trt1Delta mutant, suggesting that these pathways may contribute to telomere protection. Deletion of taz1 did not suppress chromosome circularization in cells lacking Rad3/Rad26 and Tel1/Rad32, also suggesting that two pathways protect telomeres. Chromatin immunoprecipitation analyses found that Rad3, Rad1, Rad9, Hus1, Rad17, Rad32, and Ku70 associate with telomeres. Thus, checkpoint sensor and DNA repair proteins contribute to telomere maintenance and protection through their association with telomeres.  相似文献   

3.
Studies in fission yeast have previously identified evolutionarily conserved shelterin and Stn1-Ten1 complexes, and established Rad3ATR/Tel1ATM-dependent phosphorylation of the shelterin subunit Ccq1 at Thr93 as the critical post-translational modification for telomerase recruitment to telomeres. Furthermore, shelterin subunits Poz1, Rap1 and Taz1 have been identified as negative regulators of Thr93 phosphorylation and telomerase recruitment. However, it remained unclear how telomere maintenance is dynamically regulated during the cell cycle. Thus, we investigated how loss of Poz1, Rap1 and Taz1 affects cell cycle regulation of Ccq1 Thr93 phosphorylation and telomere association of telomerase (Trt1TERT), DNA polymerases, Replication Protein A (RPA) complex, Rad3ATR-Rad26ATRIP checkpoint kinase complex, Tel1ATM kinase, shelterin subunits (Tpz1, Ccq1 and Poz1) and Stn1. We further investigated how telomere shortening, caused by trt1Δ or catalytically dead Trt1-D743A, affects cell cycle-regulated telomere association of telomerase and DNA polymerases. These analyses established that fission yeast shelterin maintains telomere length homeostasis by coordinating the differential arrival of leading (Polε) and lagging (Polα) strand DNA polymerases at telomeres to modulate Rad3ATR association, Ccq1 Thr93 phosphorylation and telomerase recruitment.  相似文献   

4.
Vertebrate-like T2AG3 telomeres in tlc1-h yeast consist of short double-stranded regions and long single-stranded overhang (G-tails) and, although based on Tbf1-capping activity, they are capping deficient. Consistent with this idea, we observe Y’ amplification because of homologous recombination, even in the presence of an active telomerase. In these cells, Y’ amplification occurs by different pathways: in Tel1+ tlc1h cells, it is Rad51-dependent, whereas in the absence of Tel1, it depends on Rad50. Generation of telomeric G-tail, which is cell cycle regulated, depends on the MRX (Mre11-Rad50-Xrs2) complex in tlc1h cells or is MRX-independent in tlc1h tel1Δ mutants. Unexpectedly, we observe telomere elongation in tlc1h lacking Rad51 that seems to act as a telomerase competitor for binding to telomeric G-tails. Overall, our results show that Tel1 and Rad51 have multiple roles in the maintenance of vertebrate-like telomeres in yeast, supporting the idea that they may participate to evolutionary conserved telomere protection mechanism/s acting at uncapped telomeres.  相似文献   

5.
In both fission yeast and humans, the shelterin complex plays central roles in regulation of telomerase recruitment, protection of telomeres against DNA damage response factors, and formation of heterochromatin at telomeres. While shelterin is essential for limiting activation of the DNA damage checkpoint kinases ATR and ATM at telomeres, these kinases are required for stable maintenance of telomeres. In fission yeast, Rad3ATR and Tel1ATM kinases are redundantly required for telomerase recruitment, since Rad3ATR/Tel1ATM-dependent phosphorylation of the shelterin subunit Ccq1 at Thr93 promotes interaction between Ccq1 and the telomerase subunit Est1. However, it remained unclear how protein-protein interactions within the shelterin complex (consisting of Taz1, Rap1, Poz1, Tpz1, Pot1 and Ccq1) contribute to the regulation of Ccq1 Thr93 phosphorylation and telomerase recruitment. In this study, we identify domains and amino acid residues that are critical for mediating Tpz1-Ccq1 and Tpz1-Poz1 interaction within the fission yeast shelterin complex. Using separation of function Tpz1 mutants that maintain Tpz1-Pot1 interaction but specifically disrupt either Tpz1-Ccq1 or Tpz1-Poz1 interaction, we then establish that Tpz1-Ccq1 interaction promotes Ccq1 Thr93 phosphorylation, telomerase recruitment, checkpoint inhibition and telomeric heterochromatin formation. Furthermore, we demonstrate that Tpz1-Poz1 interaction promotes telomere association of Poz1, and loss of Poz1 from telomeres leads to increases in Ccq1 Thr93 phosphorylation and telomerase recruitment, and telomeric heterochromatin formation defect. In addition, our studies establish that Tpz1-Poz1 and Tpz1-Ccq1 interactions redundantly fulfill the essential telomere protection function of the shelterin complex, since simultaneous loss of both interactions caused immediate loss of cell viability for the majority of cells and generation of survivors with circular chromosomes. Based on these findings, we suggest that the negative regulatory function of Tpz1-Poz1 interaction works upstream of Rad3ATR kinase, while Tpz1-Ccq1 interaction works downstream of Rad3ATR kinase to facilitate Ccq1 Thr93 phosphorylation and telomerase recruitment.  相似文献   

6.
7.
The Mre11 complex (Mre11-Rad50-Nbs1 or MRN) binds double-strand breaks where it interacts with CtIP/Ctp1/Sae2 and ATM/Tel1 to preserve genome stability through its functions in homology-directed repair, checkpoint signaling and telomere maintenance. Here, we combine biochemical, structural and in vivo functional studies to uncover key properties of Mre11-W243R, a mutation identified in two pediatric cancer patients with enhanced ataxia telangiectasia-like disorder. Purified human Mre11-W243R retains nuclease and DNA binding activities in vitro. X-ray crystallography of Pyrococcus furiosus Mre11 indicates that an analogous mutation leaves the overall Mre11 three-dimensional structure and nuclease sites intact but disorders surface loops expected to regulate DNA and Rad50 interactions. The equivalent W248R allele in fission yeast allows Mre11 to form an MRN complex that efficiently binds double-strand breaks, activates Tel1/ATM and maintains telomeres; yet, it causes hypersensitivity to ionizing radiation and collapsed replication forks, increased Rad52 foci, defective Chk1 signaling and meiotic failure. W248R differs from other ataxia telangiectasia-like disorder analog alleles by the reduced stability of its interaction with Rad50 in cell lysates. Collective results suggest a separation-of-function mutation that disturbs interactions amongst the MRN subunits and Ctp1 required for DNA end processing in vivo but maintains interactions sufficient for Tel1/ATM checkpoint and telomere maintenance functions.  相似文献   

8.
The repair of damaged DNA is coupled to the completion of DNA replication by several cell cycle checkpoint proteins, including, for example, in fission yeast Rad1Sp, Hus1Sp, Rad9Sp and Rad17Sp. We have found that these four proteins are conserved with protein sequences throughout eukaryotic evolution. Using computational techniques, including fold recognition, comparative modeling and generalized sequence profiles, we have made high confidence structure predictions for the each of the Rad1, Hus1 and Rad9 protein families (Rad17Sc, Mec3Sc and Ddc1Sc in budding yeast, respectively). Each of these families was found to share a common protein fold with that of PCNA, the sliding clamp protein that tethers DNA polymerase to its template. We used previously reported genetic and biochemical data for these proteins from yeast and human cells to predict a heterotrimeric PCNA-like ring structure for the functional Rad1/Rad9/Hus1 complex and to determine their exact order within it. In addition, for each individual protein family, contact regions with neighbors within the PCNA-like ring were identified. Based on a molecular model for Rad17Sp, we concluded that members of this family, similar to the subunits of the RFC clamp-loading complex, are capable of coupling ATP binding with conformational changes required to load a sliding clamp onto DNA. This model substantiates previous findings regarding the behavior of Rad17 family proteins upon DNA damage and within the RFC complex of clamp-loading proteins.  相似文献   

9.
Exo1 is a nuclease involved in mismatch repair, DSB repair, stalled replication fork processing and in the DNA damage response triggered by dysfunctional telomeres. In budding yeast and mice, Exo1 creates single-stranded DNA (ssDNA) at uncapped telomeres. This ssDNA accumulation activates the checkpoint response resulting in cell cycle arrest. Here, we demonstrate that Exo1 is phosphorylated when telomeres are uncapped in cdc13-1 and yku70Delta yeast cells, and in response to the induction of DNA damage. After telomere uncapping, Exo1 phosphorylation depends on components of the checkpoint machinery such as Rad24, Rad17, Rad9, Rad53 and Mec1, but is largely independent of Chk1, Tel1 and Dun1. Serines S372, S567, S587 and S692 of Exo1 were identified as targets for phosphorylation. Furthermore, mutation of these Exo1 residues altered the DNA damage response to uncapped telomeres and camptothecin treatment, in a manner that suggests Exo1 phosphorylation inhibits its activity. We propose that Rad53-dependent Exo1 phosphorylation is involved in a negative feedback loop to limit ssDNA accumulation and DNA damage checkpoint activation.  相似文献   

10.
Two large phosphatidylinositol 3-kinase–related protein kinases (PIKKs), ATM and ATR, play a central role in the DNA damage response pathway. PIKKs contain a highly conserved extreme C-terminus called the FRAP-ATM-TRRAP-C-terminal (FATC) domain. In budding yeast, ATM and ATR correspond to Tel1 and Mec1, respectively. In this study, we characterized functions of the FATC domain of Tel1 by introducing substitution or truncation mutations. One substitution mutation, termed tel1-21, and a truncation mutation, called tel1-ΔC, did not significantly affect the expression level. The tel1-21 mutation impaired the cellular response to DNA damage and conferred moderate telomere maintenance defect. In contrast, the tel1-ΔC mutation behaved like a null mutation, conferring defects in both DNA damage response and telomere maintenance. Tel1-21 protein localized to DNA ends as effectively as wild-type Tel1 protein, whereas Tel1-ΔC protein failed. Introduction of a hyperactive TEL1-hy mutation suppressed the tel1-21 mutation but not the tel1-ΔC mutation. In vitro analyses revealed that both Tel1-21 and Tel1-ΔC proteins undergo efficient autophosphorylation but exhibit decreased kinase activities toward the exogenous substrate protein, Rad53. Our results show that the FATC domain of Tel1 mediates localization to DNA ends and contributes to phosphorylation of target proteins.  相似文献   

11.
Telomere maintenance is required for chromosome stability, and telomeres are typically replicated by the action of telomerase. In both mammalian tumor and yeast cells that lack telomerase, telomeres are maintained by an alternative recombination mechanism. Here we demonstrated that the budding yeast Saccharomyces cerevisiae type I survivors derived from telomerase-deficient cells were hypersensitive to DNA damaging agents. Assays to track telomere lengths and drug sensitivity of telomerase-deficient cells from spore colonies to survivors suggested a correlation between telomere shortening and bleomycin sensitivity. Our genetic studies demonstrated that this sensitivity depends on Mec1, which signals checkpoint activation, leading to prolonged cell-cycle arrest in senescent budding yeasts. Moreover, we also observed that when cells equipped with short telomeres, recruitments of homologous recombination proteins, Rad51 and Rad52, were reduced at an HO-endonuclease-catalyzed double-strand break (DSB), while their associations were increased at chromosome ends. These results suggested that the sensitive phenotype may be attributed to the sequestration of repair proteins to compromised telomeres, thus limiting the repair capacity at bona fide DSB sites.  相似文献   

12.
Telomeres protect the natural ends of chromosomes from being repaired as deleterious DNA breaks. In fission yeast, absence of Taz1 (homologue of human TRF1 and TRF2) renders telomeres vulnerable to DNA repair. During the G1 phase, when non‐homologous end joining (NHEJ) is upregulated, taz1Δ cells undergo telomere fusions with consequent loss of viability. Here, we show that disruption of the fission yeast MRN (Rad23MRE11‐Rad50‐Nbs1) complex prevents NHEJ at telomeres and, as a result, rescues taz1Δ lethality in G1. Neither Tel1ATM activation nor 5′‐end resection was required for telomere fusion. Nuclease activity of Rad32MRE11 was also dispensable for NHEJ. Mutants unable to coordinate metal ions required for nuclease activity were proficient in NHEJ repair. In contrast, Rad32MRE11 mutations that affect binding and/or positioning of DNA ends leaving the nuclease function largely unaffected also impaired NHEJ at telomeres and restored the viability of taz1Δ in G1. Consistently, MRN structural integrity but not nuclease function is also required for NHEJ of independent DNA ends in a novel split‐molecule plasmid assay. Thus, MRN acts to tether unlinked DNA ends, allowing for efficient NHEJ.  相似文献   

13.
Proteins belonging to the Tel2/Rad-5/Clk-2 family are conserved among eukaryotes and are involved in various cellular processes, such as cell proliferation, telomere maintenance, the biological clock, and the DNA damage checkpoint. However, the molecular mechanisms underlying the functions of these molecules remain largely unclear. Here we report that in the fission yeast, Schizosaccharomyces pombe, Tel2 is required for efficient phosphorylation of Mrc1, a mediator of DNA replication checkpoint signaling, and for activation of Cds1, a replication checkpoint kinase, when DNA replication is blocked by hydroxyurea. In fact, Tel2 is required for survival of replication fork arrest and for the replication checkpoint in cells lacking Chk1, another checkpoint kinase the role of which overlaps that of Cds1 in cell cycle arrest by replication block. In addition, Tel2 plays important roles in entry into S phase and in genome stability. Tel2 is essential for vegetative cell growth, and the tel2Delta strain accumulated cells with 1C DNA content after germination. In the absence of hydroxyurea, Tel2 is vital in the mutant lacking Swi1, a component of the replication fork protection complex, and multiple Rad22 DNA repair foci were frequently observed in Tel2-repressed swi1Delta cells especially at S phase. In contrast, the cds1Deltaswi1Delta mutant did not show such lethality. These results indicate that S. pombe Tel2 plays important roles in the Mrc1-mediated replication checkpoint as well as in the Cds1-independent regulation of genome integrity.  相似文献   

14.
Telomeres are specialized functional complexes that ensure chromosome stability by protecting chromosome ends from fusions and degradation and avoiding chromosomal termini from being sensed as DNA breaks. Budding yeast Tel1 is required both for telomere metabolism and for a Rad53-dependent checkpoint responding to unprocessed double-strand breaks. We show that overexpression of a GAL1-TEL1 fusion causes transient telomere lengthening and activation of a Rad53-dependent G2/M checkpoint in cells whose telomeres are short due to the lack of either Tel1 or Yku70. Sudden telomere elongation and checkpoint-mediated cell cycle arrest are also triggered in wild-type cells by overproducing a protein fusion between the telomeric binding protein Cdc13 and the telomerase-associated protein Est1. Checkpoint activation by GAL1-TEL1 requires ongoing telomere elongation. In fact, it is turned off concomitantly with telomeres reaching a new stable length and is partially suppressed by deletion of the telomerase EST2 gene. Moreover, both telomere length rebalancing and checkpoint inactivation under galactose-induced conditions are accelerated by high levels of either the Sae2 protein, involved in double-strand breaks processing, or the negative telomere length regulator Rif2. These data suggest that sudden telomere lengthening elicits a checkpoint response that inhibits the G2/M transition.  相似文献   

15.
In many organisms, telomere DNA consists of simple sequence repeat tracts that are required to protect the chromosome end. In the yeast Saccharomyces cerevisiae, tract maintenance requires two checkpoint kinases of the ATM family, Tel1p and Mec1p. Previous work has shown that Tel1p is recruited to functional telomeres with shorter repeat tracts to promote telomerase-mediated repeat addition, but the role of Mec1p is unknown. We found that Mec1p telomere association was detected as cells senesced when telomere function was compromised by extreme shortening due to either the loss of telomerase or the double-strand break binding protein Ku. Exonuclease I effects the removal of the 5' telomeric strand, and eliminating it prevented both senescence and Mec1p telomere association. Thus, in contrast to Tel1p, Mec1p associates with short, functionally compromised telomeres.  相似文献   

16.
Defects during chromosome replication in eukaryotes activate a signaling pathway called the S-phase checkpoint, which produces a multifaceted response that preserves genome integrity at stalled DNA replication forks. Work with budding yeast showed that the ‘alternative clamp loader’ known as Ctf18-RFC acts by an unknown mechanism to activate the checkpoint kinase Rad53, which then mediates much of the checkpoint response. Here we show that budding yeast Ctf18-RFC associates with DNA polymerase epsilon, via an evolutionarily conserved ‘Pol ϵ binding module’ in Ctf18-RFC that is produced by interaction of the carboxyl terminus of Ctf18 with the Ctf8 and Dcc1 subunits. Mutations at the end of Ctf18 disrupt the integrity of the Pol ϵ binding module and block the S-phase checkpoint pathway, downstream of the Mec1 kinase that is the budding yeast orthologue of mammalian ATR. Similar defects in checkpoint activation are produced by mutations that displace Pol ϵ from the replisome. These findings indicate that the association of Ctf18-RFC with Pol ϵ at defective replication forks is a key step in activation of the S-phase checkpoint.  相似文献   

17.
Expansion of DNA trinucleotide repeats causes at least 15 hereditary neurological diseases, and these repeats also undergo contraction and fragility. Current models to explain this genetic instability invoke erroneous DNA repair or aberrant replication. Here we show that CAG/CTG tracts are stabilized in Saccharomyces cerevisiae by the alternative clamp loader/unloader Ctf18-Dcc1-Ctf8-RFC complex (Ctf18-RFC). Mutants in Ctf18-RFC increased all three forms of triplet repeat instability--expansions, contractions, and fragility--with effect over a wide range of allele lengths from 20-155 repeats. Ctf18-RFC predominated among the three alternative clamp loaders, with mutants in Elg1-RFC or Rad24-RFC having less effect on trinucleotide repeats. Surprisingly, chl1, scc1-73, or scc2-4 mutants defective in sister chromatid cohesion (SCC) did not increase instability, suggesting that Ctf18-RFC protects triplet repeats independently of SCC. Instead, three results suggest novel roles for Ctf18-RFC in facilitating genomic stability. First, genetic instability in mutants of Ctf18-RFC was exacerbated by simultaneous deletion of the fork stabilizer Mrc1, but suppressed by deletion of the repair protein Rad52. Second, single-cell analysis showed that mutants in Ctf18-RFC had a slowed S phase and a striking G2/M accumulation, often with an abnormal multi-budded morphology. Third, ctf18 cells exhibit increased Rad52 foci in S phase, often persisting into G2, indicative of high levels of DNA damage. The presence of a repeat tract greatly magnified the ctf18 phenotypes. Together these results indicate that Ctf18-RFC has additional important functions in preserving genome stability, besides its role in SCC, which we propose include lesion bypass by replication forks and post-replication repair.  相似文献   

18.
BACKGROUND: The Saccharomyces Mre11p, Rad50p, and Xrs2p proteins form a complex, called the MRX complex, that is required to maintain telomere length. Cells lacking any one of the three MRX proteins and Mec1p, an ATM-like protein kinase, undergo telomere shortening and ultimately die, phenotypes characteristic of cells lacking telomerase. The other ATM-like yeast kinase, Tel1p, appears to act in the same pathway as MRX: mec1 tel1 cells have telomere phenotypes similar to those of telomerase-deficient cells, whereas the phenotypes of tel1 cells are not exacerbated by the loss of a MRX protein. RESULTS: The nuclease activity of Mre11p was found to be dispensable for the telomerase-promoting activity of the MRX complex. The association of the single-stranded TG1-3 DNA binding protein Cdc13p with yeast telomeres occurred efficiently in the absence of Tel1p, Mre11p, Rad50p, or Xrs2p. Targeting of catalytically active telomerase to the telomere suppressed the senescence phenotype of mec1 mrx or mec1 tel1 cells. Moreover, when telomerase was targeted to telomeres, telomere lengthening was robust in mec1 mrx and mec1 tel1 cells. CONCLUSIONS: These data rule out models in which the MRX complex is necessary for Cdc13p binding to telomeres or in which the MRX complex is necessary for the catalytic activity of telomerase. Rather, the data suggest that the MRX complex is involved in recruiting telomerase activity to yeast telomeres.  相似文献   

19.
Majka J  Burgers PM 《DNA Repair》2005,4(10):1189-1194
The Saccharomyces cerevisiae heterotrimeric checkpoint clamp consisting of the Rad17, Mec3, and Ddc1 subunits (Rad17/3/1, the 9-1-1 complex in humans) is an early response factor to DNA damage in a signal transduction pathway leading to the activation of the checkpoint system and eventually to cell cycle arrest. These subunits show structural similarities with the replication clamp PCNA and indeed, it was demonstrated in vitro that Rad17/3/1 could be loaded onto DNA by checkpoint specific clamp loader Rad24-RFC, analogous to the PCNA-RFC clamp-clamp loader system. We have studied the interactions between the checkpoint clamp subunits and the activity of partial clamp complexes. We find that none of the possible partial complexes makes up a clamp that can be loaded onto DNA by Rad24-RFC. In agreement, overexpression of DDC1 or RAD17 in a MEC3Delta strain, or of MEC3 or RAD17 in a DDC1Delta strain shows no rescue of damage sensitivity.  相似文献   

20.
Mre11, Rad50, and Nbs1 form a conserved heterotrimeric complex that is involved in recombination and DNA damage checkpoints. Mutations in this complex disrupt the S-phase DNA damage checkpoint, the checkpoint which slows replication in response to DNA damage, and cause chromosome instability and cancer in humans. However, how these proteins function and specifically where they act in the checkpoint signaling pathway remain crucial questions. We identified fission yeast Nbs1 by using a comparative genomic approach and showed that the genes for human Nbs1 and fission yeast Nbs1 and that for their budding yeast counterpart, Xrs2, are members of an evolutionarily related but rapidly diverging gene family. Fission yeast Nbs1, Rad32 (the homolog of Mre11), and Rad50 are involved in DNA damage repair, telomere regulation, and the S-phase DNA damage checkpoint. However, they are not required for G(2) DNA damage checkpoint. Our results suggest that a complex of Rad32, Rad50, and Nbs1 acts specifically in the S-phase branch of the DNA damage checkpoint and is not involved in general DNA damage recognition or signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号