首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
In the yeast Saccharomyces cerevisiae the TOR complex 1 (TORC1) controls many growth‐related cellular processes and is essential for cell growth and proliferation. Macrolide antibiotic rapamycin, in complex with a cytosol protein named FKBP12, specifically inhibits TORC1, causing growth arrest. The FKBP12‐rapamycin complex interferes with TORC1 function by binding to the FRB domain of the TOR proteins. In an attempt to understand the role of the FRB domain in TOR function, we identified a single point mutation (Tor2W2041R) in the FRB domain of Tor2 that renders yeast cells rapamycin resistant and temperature sensitive. At the permissive temperature, the Tor2 mutant protein is partially defective for binding with Kog1 and TORC1 is impaired for membrane association. At the restrictive temperature, Kog1 but not the Tor2 mutant protein, is rapidly degraded. Overexpression of ubiquitin stabilizes Kog1 and suppresses the growth defect associated with the tor2 mutant at the nonpremissive temperature. We find that ubiquitin binds non‐covalently to Kog1, prevents Kog1 from degradation and stabilizes TORC1. Our data reveal a unique role for ubiquitin in regulation of TORC1 and suggest that Kog1 requires association with the Tor proteins for stabilization.  相似文献   

4.
The evolutionarily conserved Orm1 and Orm2 proteins mediate sphingolipid homeostasis. However, the homologous Orm proteins and the signaling pathways modulating their phosphorylation and function are incompletely characterized. Here we demonstrate that inhibition of nutrient-sensitive target of rapamycin complex 1 (TORC1) stimulates Orm phosphorylation and synthesis of complex sphingolipids in Saccharomyces cerevisiae. TORC1 inhibition activates the kinase Npr1 that directly phosphorylates and activates the Orm proteins. Npr1-phosphorylated Orm1 and Orm2 stimulate de novo synthesis of complex sphingolipids downstream of serine palmitoyltransferase. Complex sphingolipids in turn stimulate plasma membrane localization and activity of the nutrient scavenging general amino acid permease 1. Thus activation of Orm and complex sphingolipid synthesis upon TORC1 inhibition is a physiological response to starvation.  相似文献   

5.
6.
A yeast two-hybrid screen using the last 28 amino acids of the cytoplasmic domain of the neural cell adhesion molecule L1 identified RanBPM as an L1-interacting protein. RanBPM associates with L1 in vivo and the N-terminal region of RanBPM (N-RanBPM), containing the SPRY domain, is sufficient for the interaction with L1 in a glutathione S-transferase pull-down assay. L1 antibody patching dramatically changes the subcellular localization of N-RanBPM in transfected COS cells. Overexpression of N-RanBPM in COS cells reduces L1-triggered extracellular signal-regulated kinase 1/2 activation by 50% and overexpression of N-RanBPM in primary neurons inhibits L1-mediated neurite outgrowth and branching. These data suggest that RanBPM is an adaptor protein that links L1 to the extracellular signal-regulated kinase/MAPK pathway.  相似文献   

7.
Glutamylation is a functionally important tubulin posttranslational modification enriched on stable microtubules of neuronal axons, mitotic spindles, centrioles, and cilia. In vertebrates, balanced activities of tubulin glutamyl ligase and cytoplasmic carboxypeptidase deglutamylase enzymes maintain organelle- and cell type–specific tubulin glutamylation patterns. Tubulin glutamylation in cilia is regulated via restricted subcellular localization or expression of tubulin glutamyl ligases (ttlls) and nonenzymatic proteins, including the zebrafish TPR repeat protein Fleer/Ift70. Here we analyze the expression patterns of ccp deglutamylase genes during zebrafish development and the effects of ccp gene knockdown on cilia formation, morphology, and tubulin glutamylation. The deglutamylases ccp2, ccp5, and ccp6 are expressed in ciliated cells, whereas ccp1 expression is restricted to the nervous system. Only ccp5 knockdown increases cilia tubulin glutamylation, induces ciliopathy phenotypes, including axis curvature, hydrocephalus, and pronephric cysts, and disrupts multicilia motility, suggesting that Ccp5 is the principal tubulin deglutamylase that maintains functional levels of cilia tubulin glutamylation. The ability of ccp5 knockdown to restore cilia tubulin glutamylation in fleer/ift70 mutants and rescue pronephric multicilia formation in both fleer- and ift88-deficient zebrafish indicates that tubulin glutamylation is a key driver of ciliogenesis.  相似文献   

8.
Glucose controls the phosphorylation of silent information regulator 2 (Sir2), a NAD+‐dependent protein deacetylase, which regulates the expression of the ATP‐dependent proton pump Pma1 and replicative lifespan (RLS) in yeast. TORC1 signaling, which is a central regulator of cell growth and lifespan, is regulated by glucose as well as nitrogen sources. In this study, we demonstrate that TORC1 signaling controls Sir2 phosphorylation through casein kinase 2 (CK2) to regulate PMA1 expression and cytoplasmic pH (pHc) in yeast. Inhibition of TORC1 signaling by either TOR1 deletion or rapamycin treatment decreased PMA1 expression, pHc, and vacuolar pH, whereas activation of TORC1 signaling by expressing constitutively active GTR1 (GTR1Q65L) resulted in the opposite phenotypes. Deletion of SIR2 or expression of a phospho‐mutant form of SIR2 increased PMA1 expression, pHc, and vacuolar pH in the tor1Δ mutant, suggesting a functional interaction between Sir2 and TORC1 signaling. Furthermore, deletion of TOR1 or KNS1 encoding a LAMMER kinase decreased the phosphorylation level of Sir2, suggesting that TORC1 signaling controls Sir2 phosphorylation. It was also found that Sit4, a protein phosphatase 2A (PP2A)‐like phosphatase, and Kns1 are required for TORC1 signaling to regulate PMA1 expression and that TORC1 signaling and the cyclic AMP (cAMP)/protein kinase A (PKA) pathway converge on CK2 to regulate PMA1 expression through Sir2. Taken together, these findings suggest that TORC1 signaling regulates PMA1 expression and pHc through the CK2–Sir2 axis, which is also controlled by cAMP/PKA signaling in yeast.  相似文献   

9.
Lysosomal membrane permeabilization (LMP) is a poorly understood regulator of programmed cell death that involves leakage of luminal lysosomal or vacuolar hydrolases into the cytoplasm. In Saccharomyces cerevisiae, LMP can be induced by antifungals and endoplasmic reticulum stressors when calcineurin also has been inactivated. A genome-wide screen revealed Pib2, a relative of LAPF/phafin1 that regulates LMP in mammals, as a pro-LMP protein in yeast. Pib2 associated with vacuolar and endosomal limiting membranes in unstressed cells in a manner that depended on its FYVE domain and on phosphatidylinositol 3-phosphate (PI(3)P) biosynthesis. Genetic experiments suggest that Pib2 stimulates the activity of TORC1, a vacuole-associated protein kinase that is sensitive to rapamycin, in a pathway parallel to the Ragulator/EGO complex containing the GTPases Gtr1 and Gtr2. A hyperactivating mutation in the catalytic subunit of TORC1 restored LMP to the gtr1∆ and pib2∆ mutants and also prevented the synthetic lethality of the double mutants. These findings show novel roles of PI(3)P and Pib2 in the regulation of TORC1, which in turn promoted LMP and nonapoptotic death of stressed cells. Rapamycin prevented the death of the pathogenic yeast Candida albicans during exposure to fluconazole plus a calcineurin inhibitor, suggesting that TORC1 broadly promotes sensitivity to fungistats in yeasts.  相似文献   

10.
11.
The CFTR (cystic fibrosis transmembrane conductance regulator) protein is a large polytopic protein whose biogenesis is inefficient. To better understand the regulation of CFTR processing and trafficking, we conducted a genetic screen that identified COMMD1 as a new CFTR partner. COMMD1 is a protein associated with multiple cellular pathways, including the regulation of hepatic copper excretion, sodium uptake through interaction with ENaC (epithelial sodium channel) and NF-kappaB signaling. In this study, we show that COMMD1 interacts with CFTR in cells expressing both proteins endogenously. This interaction promotes CFTR cell surface expression as assessed by biotinylation experiments in heterologously expressing cells through regulation of CFTR ubiquitination. In summary, our data demonstrate that CFTR is protected from ubiquitination by COMMD1, which sustains CFTR expression at the plasma membrane. Thus, increasing COMMD1 expression may provide an approach to simultaneously inhibit ENaC absorption and enhance CFTR trafficking, two major issues in cystic fibrosis.  相似文献   

12.
The mTOR pathway is the central regulator of cell size. External signals from growth factors and nutrients converge on the mTORC1 multi-protein complex to modulate downstream targets, but how the different inputs are integrated and translated into specific cellular responses is incompletely understood. Deregulation of the mTOR pathway occurs in polycystic kidney disease (PKD), where cilia (filiform sensory organelles) fail to sense urine flow because of inherited mutations in ciliary proteins. We therefore investigated if cilia have a role in mTOR regulation. Here, we show that ablation of cilia in transgenic mice results in enlarged cells when compared with control animals. In vitro analysis demonstrated that bending of the cilia by flow is required for mTOR downregulation and cell-size control. Surprisingly, regulation of cell size by cilia is independent of flow-induced calcium transients, or Akt. However, the tumour-suppressor protein Lkb1 localises in the cilium, and flow results in increased AMPK phosphorylation at the basal body. Conversely, knockdown of Lkb1 prevents normal cell-size regulation under flow conditions. Our results demonstrate that the cilium regulates mTOR signalling and cell size, and identify the cilium-basal body compartment as a spatially restricted activation site for Lkb1 signalling.  相似文献   

13.
Nutrient-sensitive phosphorylation of the S6 protein of the 40S subunit of the eukaryote ribosome is highly conserved. However, despite four decades of research, the functional consequences of this modification remain unknown. Revisiting this enigma in Saccharomyces cerevisiae, we found that the regulation of Rps6 phosphorylation on Ser-232 and Ser-233 is mediated by both TOR complex 1 (TORC1) and TORC2. TORC1 regulates phosphorylation of both sites via the poorly characterized AGC-family kinase Ypk3 and the PP1 phosphatase Glc7, whereas TORC2 regulates phosphorylation of only the N-terminal phosphosite via Ypk1. Cells expressing a nonphosphorylatable variant of Rps6 display a reduced growth rate and a 40S biogenesis defect, but these phenotypes are not observed in cells in which Rps6 kinase activity is compromised. Furthermore, using polysome profiling and ribosome profiling, we failed to uncover a role of Rps6 phosphorylation in either global translation or translation of individual mRNAs. Taking the results together, this work depicts the signaling cascades orchestrating Rps6 phosphorylation in budding yeast, challenges the notion that Rps6 phosphorylation plays a role in translation, and demonstrates that observations made with Rps6 knock-ins must be interpreted cautiously.  相似文献   

14.
Beta-arrestin-mediated signaling regulates protein synthesis   总被引:1,自引:0,他引:1  
Seven transmembrane receptors (7TMRs) exert strong regulatory influences on virtually all physiological processes. Although it is historically assumed that heterotrimeric G proteins mediate these actions, there is a newer appreciation that beta-arrestins, originally thought only to desensitize G protein signaling, also serve as independent receptor signal transducers. Recently, we found that activation of ERK1/2 by the angiotensin receptor occurs via both of these distinct pathways. In this work, we explore the physiological consequences of beta-arrestin ERK1/2 signaling and delineate a pathway that regulates mRNA translation and protein synthesis via Mnk1, a protein that both physically interacts with and is activated by beta-arrestins. We show that beta-arrestin-dependent activation of ERK1/2, Mnk1, and eIF4E are responsible for increasing translation rates in both human embryonic kidney 293 and rat vascular smooth muscle cells. This novel demonstration that beta-arrestins regulate protein synthesis reveals that the spectrum of beta-arrestin-mediated signaling events is broader than previously imagined.  相似文献   

15.
Increased Cdk4 expression occurs coincident with over-expression of cyclin D1 in many human tumours and tumourigenic mouse models. Here, we investigate both in vivo and in vitro the mechanism by which Cdk4 expression is regulated in the context of cyclin D1 over-expression. Cdk4 mRNA levels in cyclin D1-over-expressing tissue and cultured cells were unchanged compared with controls. In contrast, Cdk4 protein levels were increased in cyclin D1-over-expressing tissue and cells versus their respective controls. This increase was not due to altered protein stability, but appeared to be due to an increase in Cdk4 protein synthesis. We also performed immunoprecipitation and in vitro kinase assays to demonstrate an increase in cyclin D1-Cdk4 complex formation and associated kinase activity. Blocking cyclin D1 expression resulted in diminished Cdk4 protein but not mRNA levels. These findings suggest a mechanism by which Cdk4 expression is increased in the context of cyclin D1 over-expression during tumourigenesis.  相似文献   

16.
17.
Hectd1 mutant mouse embryos exhibit the neural tube defect exencephaly associated with abnormal cranial mesenchyme. Cellular rearrangements in cranial mesenchyme are essential during neurulation for elevation of the neural folds. Here we investigate the molecular basis of the abnormal behavior of Hectd1 mutant cranial mesenchyme. We demonstrate that Hectd1 is a functional ubiquitin ligase and that one of its substrates is Hsp90, a chaperone protein with both intra- and extracellular clients. Extracellular Hsp90 enhances migration of multiple cell types. In mutant cranial mesenchyme cells, both secretion of Hsp90 and emigration of cells from cranial mesenchyme explants were enhanced. Importantly, we show that this enhanced emigration was highly dependent on the excess Hsp90 secreted from mutant cells. Together, our data set forth a model whereby increased secretion of Hsp90 in the cranial mesenchyme of Hectd1 mutants is responsible, at least in part, for the altered organization and behavior of these cells and provides a potential molecular mechanism underlying the neural tube defect.  相似文献   

18.
Huang Z  Coleman JM  Su Y  Mann M  Ryan J  Shultz LD  Huang H 《Cytokine》2005,29(3):118-124
SHP-1 has been shown to play positive and negative regulatory roles in IL-4-induced STAT6 phosphorylation and in IL-4-mediated functions. To determine whether SHP-1 can regulate STAT6 phosphorylation and IL-4-mediated functions in a cell type-specific manner in the immune system, we examined the IL-4 receptor (IL-4R) expression, STAT6 phosphorylation, and IL-4-mediated functions in CD4+ and CD8+ T cells of viable motheaten (me(v)/me(v)) and littermate control (+/-) mice. CD4+ T cells as well as CD8+ T cells from the lymph node of me(v)/me(v) and +/- mice expressed comparable levels of IL-4R. In CD4+ T cells, the loss of SHP-1 activity did not affect IL-4-induced STAT6 phosphorylation or IL-4-mediated function. In contrast, SHP-1-deficient CD8+ T cells from me(v)/me(v) mice failed to develop into IL-4-producing type-2 cytotoxic T cells (Tc2) in the presence of IL-4 despite that they showed comparable levels of STAT6 phosphorylation to that of +/- CD8+ T cells. Loss of SHP-1 activity also abolished IL-4-mediated inhibition of c-kit expression in bone marrow-derived mast cell (BMMC). Thus, our data suggest that SHP-1 may regulate IL-4-induced STAT6 phosphorylation and IL-4-mediated functions in a cell type-specific manner.  相似文献   

19.
Prostasin, a trypsinlike serine peptidase, is highly expressed in prostate, kidney, and lung epithelia, where it is bound to the cell surface, secreted, or both. Prostasin activates the epithelial sodium channel (ENaC) and suppresses invasion of prostate and breast cancer cells. The studies reported here establish mechanisms of membrane anchoring and secretion in kidney and lung epithelial cells and demonstrate a critical role for prostasin in regulating epithelial monolayer function. We report that endogenous mouse prostasin is glycosylphosphatidylinositol (GPI) anchored to the cell surface and is constitutively secreted from the apical surface of kidney cortical collecting duct cells. Using site-directed mutagenesis, detergent phase separation, and RNA interference approaches, we show that prostasin secretion depends on GPI anchor cleavage by endogenous GPI-specific phospholipase D1 (Gpld1). Secretion of prostasin by kidney and lung epithelial cells, in contrast to prostate epithelium, does not depend on COOH-terminal processing at conserved Arg322. Using stably transfected M-1 cells expressing wild-type, catalytically inactive, or chimeric transmembrane (not GPI)-anchored prostasins we establish that prostasin regulates transepithelial resistance, current, and paracellular permeability by GPI anchor- and protease activity-dependent mechanisms. These studies demonstrate a novel role for prostasin in regulating epithelial monolayer resistance and permeability in kidney epithelial cells and, furthermore, show specifically that prostasin is a critical regulator of transepithelial ion transport in M-1 cells. These functions depend on the GPI anchor as well as the peptidase activity of prostasin. These studies suggest that cell-specific Gpld1- or peptidase-dependent pathways for prostasin secretion may control prostasin functions in a tissue-specific manner. serine protease; epithelial sodium channel; glycosylphosphatidylinositol anchor; transepithelial resistance; tight junction  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号