首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Butyrolactone I (BL) is a competitive inhibitor of ATP for binding and activation of cyclin-dependent kinases and is a potent inhibitor of cell cycle progression. Treatment of H460 human lung and SW480 human colon cancer cells with doses of BL that exceed the Ki for CDK inhibition but which are much lower than doses required to inhibit MAPK, PKA, PKC, or EGFR lead to a rapid significant reduction of endogenous p21 protein expression. BL-dependent inhibition of p21 expression appears to be p53-independent. BL-dependent p21 degradation was blocked by lactacystin, consistent with the hypothesis that there is accelerated p21 proteasomal degradation in the presence of BL. BL also inhibited the p53-dependent increase of p21 protein expression in cells exposed to the DNA damag-ing agent etoposide, and favored a greater G2/M arrest as compared to the non-BL exposed cells. BL accelerated the degradation of exogenously expressed p21 that was not observed with a C-terminal truncated form of p21. Degradation of exogenous p21 led to a shift to G2 accumulation in the cells exposed to BL. We conclude that BL has effects on the cell cycle beyond its role as a CDK inhibitor and can be used as a novel tool to study the mechanism of p21 degradation and the consequences towards p21- dependent checkpoints.  相似文献   

2.
The cyclin dependent kinase inhibitor (CKI) p27Kip1 binds to cyclin E/CDK2 complexes and prevents premature S-phase entry. During late G1 and throughout S phase, p27 phosphorylation at T187 leads to its subsequent degradation, which relieves CDK2 inhibition to promote cell cycle progression. However, critical events that trigger CDK2 complexes to phosphorylate p27 remain unclear. Utilizing recombinant proteins, we demonstrate that human Speedy (Spy1) activates CDK2 to phosphorylate p27 at T187 in vitro. Addition of Spy1 or Spy1/CDK2 to a preformed, inhibited cyclin E/CDK2/p27 complex also promoted this phosphorylation. Furthermore, Spy1 protected cyclin E/CDK2 from p27 inhibition toward histone H1, in vitro. Inducible Spy1 expression in U2OS cells reduced levels of endogenous p27 and exogenous p27WT, but not a p27T187A mutant. Additionally, Spy1 expression in synchronized HeLa cells enhanced T187 phosphorylation and degradation of endogenous p27 in late G1 and throughout S phase. Our studies provide evidence that Spy1 expression enhances CDK2-dependent p27 degradation during late G1 and throughout S phase.  相似文献   

3.
4.
We have examined the effects of the CDK1 inhibitor CGP74514A on cell cycle- and apoptosis-related events in human leukemia cells. An 18-hr exposure to 5 mM CGP74514A induced mitochondrial damage (i.e., loss of Dym) and apoptosis in multiple human leukemia cell lines (e.g., U937, HL-60, KG-1, CCRF-CEM, Raji, and THP; range 30-95%). In U937 cells, CGP74514A- induced apoptosis (5 mM) became apparent within 4 hr and approached 100% by 24 hr. The pan- caspase inhibitor Boc-fmk and the caspase-8 inhibitor IETD-fmk opposed CGP74514A-induced caspase-9 activation and PARP degradation, but not cytochrome c or Smac/DIABLO release. CGP74514A-mediated apoptosis was substantially blocked by ectopic expression of full-length Bcl- 2, a loop-deleted mutant Bcl-2, and Bcl-xL. CGP74514A treatment (5 mM; 18 hr) resulted in increased p21CIP1 expression, p27KIP1 degradation, diminished E2F1 expression, and dephosphorylation of p34cdc2. It also induced early (i.e., within 2 hr) inhibition of CDK1 activity and dephosphorylation of pRb, followed by pRb degradation, but did not block pRb phosphorylation at CDK2- and CDK4- specific sites. These findings indicate that the selective CDK1 inhibitor, CGP74514A, induces complex changes in cell cycle-related proteins in human leukemia cells accompanied by extensive mitochondrial damage, caspase activation, and apoptosis.

Key Words:

Leukemia, CDK1 Inhibitor, Apoptosis, CGP74514A  相似文献   

5.
This study investigates molecular mechanisms underlying cell cycle arrest when cells are exposed to high levels of oxygen (hyperoxia). Hyperoxia has previously been shown to increase expression of the cell cycle regulators p53 and p21. In the current study, we found that p53-deficient human lung adenocarcinoma H1299 cells failed to induce p21 or growth arrest in G(1) when exposed to 95% oxygen. Instead, cells arrested in S and G(2). Stable expression of p53 restored induction of p21 and G(1) arrest without affecting mRNA expression of the other Cip or INK4 G(1) kinase inhibitors. To confirm the role of p21 in G(1) arrest, we created H1299 cells with tetracycline-inducible expression of enhanced green fluorescent protein (EGFP), EGFP fused to p21 (EGFp21), or EGFP fused to p27 (EGFp27), a related cell cycle inhibitor. The amino terminus of p21 and p27 bind cyclin-dependent kinases (Cdk), whereas the carboxy terminus of p21 binds the sliding clamp proliferating cell nuclear antigen (PCNA). EGFp21 or EGFp27, but not EGFP by itself, restored G(1) arrest during hyperoxia. When separately overexpressed, the amino-terminal Cdk and carboxy-terminal PCNA binding domains of p21 each prevented cells from exiting G(1) during exposure. These findings demonstrate that exposure in vitro to hyperoxia exerts G(1) arrest through p53-dependent induction of p21 that suppresses Cdk and PCNA activity. Because PCNA also participates in DNA repair, these results raise the possibility that p21 also affects repair of oxidized DNA.  相似文献   

6.
We have studied the ability of F9 teratocarcinoma cells to arrest in G1/S and G2/M checkpoints following gamma-irradiation. Wild-type p53 protein is rapidly accumulated in F9 cells after gamma-irradiation, however this is not followed by G1/S arrest; there is just a reversible delay of the cell cycle in G2/M. In order to elucidate the reasons of the lack of G1/S arrest in F9 cells we investigated the levels of regulatory cell cycle proteins: G1-cyclins, cyclin dependent kinases and kinase inhibitor p21WAF1/CIP1. We have shown that in spite of p53-dependent activation of p21WAF1/CIP1 promoter, p21WAF1/CIP1 protein is not revealed by different polyclonal and monoclonal antibodies, either by immunoblotting or by immunofluorescent staining. However, when cells are treated with specific proteasome inhibitor lactacystin, p21WAF1/CIP1 protein is revealed. We therefore suggest that p21WAF1/CIP1 protein is subjected to proteasome degradation in F9 cells and probably the lack of G1/S arrest after gamma-irradiation is due to this degradation. Thus, it is the combination of functionally active p53 with low level expression of p21WAF1/CIP1 that causes a short delay of the cell cycle progression in G2/M, rather than the G1-arrest after gamma-irradiation of F9 cells.  相似文献   

7.
We studied the effects of apigenin on the cell cycle distribution and apoptosis of human breast cancer cells and explored the mechanisms underlying these effects. We first investigated the antiproliferative effects in SK-BR-3 cells exposed to between 1 and 100 microM apigenin for 24, 48 and 72 h. Apigenin significantly inhibited cell proliferation at concentrations over 50 microM, regardless of exposure time (P<.05), and resulted in significant cell cycle arrest in the G(2)/M phase after 48 h of treatment at high concentrations (50 and 100 microM; P<.05). To investigate the regulatory proteins of cell cycle arrest affected by apigenin, we treated cells with 50 and 100 microM apigenin for 72 h. Apigenin caused a slight decrease in cyclin D and cyclin E expression, with no change in CDK2 and CDK4. In addition, the apigenin-induced accumulation of the cell population in the G(2)/M phase resulted in a decrease in CDK1 together with cyclin A and cyclin B. In an additional study, apigenin also increased the accumulation of p53 and further enhanced the level of p21(Cip1), with no change in p27(Kip1). The expression of Bax and cytochrome c of p53 downstream target was increased markedly at high concentration treatment over 50 microM apigenin. Based on our findings, the mechanism by which apigenin causes cell cycle arrest via the regulation of CDK1 and p21(Cip1) and induction of apoptosis seems to be involved in the p53-dependent pathway.  相似文献   

8.
9.
10.
Lee B  Kim CH  Moon SK 《FEBS letters》2006,580(22):5177-5184
Honokiol, an active component in extracts of Magnolia officinalis, has been proposed to play a role in anti-inflammatory, antioxidant activity, anti-angiogenic and anti-tumor activity. Although honokiol has a variety of pharmacological effects on certain cell types, its effects on vascular smooth muscle cells (VSMC) are unclear. This issue was investigated in the present study, honokiol was found to inhibit cell viability and DNA synthesis in cultured VSMC. These inhibitory effects were associated with G1 cell cycle arrest. Treatment with honokiol blocks the cell cycle in the G1 phase, down-regulates the expression of cyclins and CDKs and up-regulates the expression of p21WAF1, a CDK inhibitor. While honokiol did not up-regulate p27, it caused an increase in the promoter activity of the p21WAF1 gene. Immunoblot and deletion analysis of the p21WAF1 promoter showed that honokiol induced the expression of p21WAF1 and that this expression was independent of the p53 pathway. Furthermore, the honokiol-mediated signaling pathway involved in VSMC growth inhibition was examined. Among the relevant pathways, honokiol induced a marked activation of p38 MAP kinase and JNK. The expression of dominant negative p38 MAP kinase and SB203580, a p38 MAP kinase specific inhibitor, blocked the expression of honokiol-dependent p38 MAP kinase and p21WAF1. Consistently, blockade of p38 MAPK kinase function reversed honokiol-induced VSMC proliferation and cell cycle proteins. These data demonstrate that the p38 MAP kinase pathway participates in p21WAF1 induction, subsequently leading to a decrease in the levels of cyclin D1/CDK4 and cyclin E/CDK2 complexes and honokiol-dependent VSMC growth inhibition. In conclusion, these findings concerning the molecular mechanisms of honokiol in VSMC provides a theoretical basis for clinical approaches to the use therapeutic agents in treating atherosclerosis.  相似文献   

11.
12.
Previous studies have shown that hyperoxia inhibits proliferation and increases the expression of the tumor suppressor p53 and its downstream target, the cyclin-dependent kinase inhibitor p21(CIP1/WAF1), which inhibits proliferation in the G1 phase of the cell cycle. To determine whether growth arrest was mediated through activation of the p21-dependent G1 checkpoint, the kinetics of cell cycle movement during exposure to 95% O2 were assessed in the Mv1Lu and A549 pulmonary adenocarcinoma cell lines. Cell counts, 5-bromo-2'-deoxyuridine incorporation, and cell cycle analyses revealed that growth arrest of both cell lines occurred in S phase, with A549 cells also showing evidence of a G1 arrest. Hyperoxia increased p21 in A549 but not in Mv1Lu cells, consistent with the activation of the p21-dependent G1 checkpoint. The ability of p21 to exert the G1 arrest was confirmed by showing that hyperoxia inhibited proliferation of HCT 116 colon carcinoma cells predominantly in G1, whereas an isogenic line lacking p21 arrested in S phase. The cell cycle arrest in S phase appears to be a p21-independent process caused by a gradual reduction in the rate of DNA strand elongation. Our data reveal that hyperoxia inhibits proliferation in G1 and S phase and demonstrate that p53 and p21 retain their ability to affect G1 checkpoint control during exposure to elevated O2 levels.  相似文献   

13.
Overexpression of MDM2 oncoprotein has been detected in a large number of diverse human malignancies and has been shown to play both p53-dependent and p53-independent roles in oncogenesis. Our study was designed to explore the impact of MDM2 overexpression on the levels of various cell cycle regulatory proteins including Aurora kinase-B (AURK-B), CDC25C and CDK1, which are known to promote tumor progression and increase metastatic potential. Our data from human cell cycle RT2 profiler PCR array experiments revealed significant changes in the expression profile of genes that are involved in different phases of cell cycle regulation in LNCaP-MST (MDM2 transfected) prostate cancer cells. Our current study has demonstrated a significant increase in the expression level of AURK-B, CDC25C, Cyclin A2, Cyclin B and CDK1 in LNCaP-MST cells as compared with wild type LNCaP cells that were modulated by MDM2 specific inhibitor Nutlin-3. In fact, the expression levels of the above- mentioned proteins were significantly altered at both mRNA and protein levels after treating the cells with 20 μM Nutlin-3 for 24 h. Additionally, the pro-apoptotic proteins including p53, p21, and Bax were elevated with the concomitant decrease in the key anti-apoptotic proteins following MDM2 inhibitor treatment. Also, Nutlin-3 treated cells demonstrated caspase-3 activation was observed with an in-vitro caspase-3 fluorescent assay performed with caspase 3/7 specific DEVD-amc substrate. Our results offer significant evidence towards the effectiveness of MDM2 inhibition in causing cell cycle arrest via blocking the transmission of signals through AURKB-CDK1 axis and inducing apoptosis in LNCaP-MST cancer cells. It is evident from our data that MDM2 overexpression probably is the primary cause for CDK1 up-regulation in the LNCaP-MST cells, which might have occurred possibly through activation of AURK-B. However, further studies in this direction should shed more light on the intracellular mechanisms involved in the regulation of Aurora kinase-B and CDK1 axis in MDM2 positive cancers.  相似文献   

14.
Trichostatin A (TSA, 17 nM), a specific and reversible inhibitor of histone deacetylase induced neurite network formation at and after 4 days. The networks were preserved for at least 3 weeks in the presence of TSA. Butyrolactone I (BLI, 23.6 microM), an inhibitor of cdc2 and cdk2 kinases, also induced neurite extension. Both compounds enhanced the acetylcholinesterase activity of the cells. Cell cycle progression of the cells was blocked by TSA (17 nM) at G1 phase alone. Furthermore, the level of histone hyperacetylation and p21(WAF1) expression in TSA-treated cells increased transiently. These findings suggest that the induction of the neuronal differentiation in Neuro 2a cells by these agents requires the cell cycle arrest at G1 phase, which is caused by inhibition of cycline dependent kinase, a target molecule of BLI and p21(WAF1).  相似文献   

15.
Several regulatory proteins control cell cycle progression. These include Emi1, an anaphase-promoting complex (APC) inhibitor whose destruction controls progression through mitosis to G1, and p21WAF1, a cyclin-dependent kinase (CDK) inhibitor activated by DNA damage. We have analyzed the role of p21WAF1 in G2-M phase checkpoint control and in prevention of polyploidy after DNA damage. After DNA damage, p21+/+ cells stably arrest in G2, whereas p21−/− cells ultimately progress into mitosis. We report that p21 down-regulates Emi1 in cells arrested in G2 by DNA damage. This down-regulation contributes to APC activation and results in the degradation of key mitotic proteins including cyclins A2 and B1 in p21+/+ cells. Inactivation of APC in irradiated p21+/+ cells can overcome the G2 arrest. siRNA-mediated Emi1 down-regulation prevents irradiated p21−/− cells from entering mitosis, whereas concomitant down-regulation of APC activity counteracts this effect. Our results demonstrate that Emi1 down-regulation and APC activation leads to stable p21-dependent G2 arrest after DNA damage. This is the first demonstration that Emi1 regulation plays a role in the G2 DNA damage checkpoint. Further, our work identifies a new p21-dependent mechanism to maintain G2 arrest after DNA damage.  相似文献   

16.
Liriodenine is an aporphine alkaloid compound extracted from the leaves of Michelia compressa var. lanyuensis. It had been reported to have an anti-colon cancer effect, but the mechanism remains unclear. In the present study, the antiproliferative mechanisms of liriodenine were investigated in the human colon cancer SW480 cells. Flow cytometry analysis indicated that liriodenine notably induced the G1/S phase arrest. The G1/S phase cycle-related proteins analysis illustrated that the expressions of cyclin-dependent kinase (CDK) 2, CDK4 and CDK6, and of cyclin D1 and A, as well as the phosphorylation of retinoblastoma tumor suppressor protein (ppRB) were found to be markedly reduced by liriodenine, whereas the protein levels of the CDK inhibitors (CKIs), p21 and p27 were increased. Moreover, the intracellular nitric oxide (NO) production, protein levels of inducible NO synthase (iNOS) and, p53 were increased. The p53 overexpression was a downstream event of NO production in liriodenine-induced G1/S-arrested SW480 cells, and the up-regulation of p21 and p27 was found to be mediated by a p53-dependent pathway. The inhibition of p53 by pifithrin-α (PFT-α), down-regulation of p21 and p27 by siRNA, or NO reduction by S-ethylisothiourea (ETU) entirely abolished the liriodenine-induced G1/S phase arrest. We concluded that liriodenine potently inhibited the cell cycle of SW480 cancer cells via NO- and p53-dependent G1/S phase arrest pathway. These results suggest that liriodenine might be a powerful agent against colon cancer.  相似文献   

17.
The cycle inhibiting factor (Cif) is a cyclomodulin produced by enteropathogenic and enterohemorrhagic Escherichia coli. Upon injection into the host cell by the bacterial type III secretion system, Cif inhibits the G2/M transition via sustained inhibition of the mitosis inducer CDK1 independently of the DNA damage response. In this study, we show that Cif induces not only G2, but also G1 cell cycle arrest depending on the stage of cells in the cell cycle during the infection. In various cell lines including differentiated and untransformed enterocytes, the cell cycle arrests are correlated with the accumulation of the cyclin-dependent kinase inhibitors p21(waf1/cip1) and p27(kip1). Cif-induced cyclin-dependent kinase inhibitor accumulation is independent of the p53 pathway but occurs through inhibition of their proteasome-mediated degradation. Our results provide a direct link between the mode of action of Cif and the host cell cycle control.  相似文献   

18.
Through a detailed study of cell cycle progression, protein expression, and kinase activity in gamma-irradiated synchronized cultures of human skin fibroblasts, distinct mechanisms of initiation and maintenance of G2-phase and subsequent G1-phase arrests have been elucidated. Normal and E6-expressing fibroblasts were used to examine the role of TP53 in these processes. While G2 arrest is correlated with decreased cyclin B1/CDC2 kinase activity, the mechanisms associated with initiation and maintenance of the arrest are quite different. Initiation of the transient arrest is TP53-independent and is due to inhibitory phosphorylation of CDC2 at Tyr15. Maintenance of the G2 arrest is dependent on TP53 and is due to decreased levels of cyclin B1 mRNA and a corresponding decline in cyclin B1 protein level. After transiently arresting in G2 phase, normal cells chronically arrest in the subsequent G1 phase while E6-expressing cells continue to cycle. The initiation of this TP53-dependent G1-phase arrest occurs despite the presence of substantial levels of cyclin D1/CDK4 and cyclin E/CDK2 kinase activities, hyperphosphoryated RB, and active E2F1. CDKN1A (also known as p21(WAF1/CIP1)) levels remain elevated during this period. Furthermore, CDKN1A-dependent inhibition of PCNA activity does not appear to be the mechanism for this early G1 arrest. Thus the inhibition of entry of irradiated cells into S phase does not appear to be related to DNA-bound PCNA complexed to CDKN1A. The mechanism of chronic G1 arrest involves the down-regulation of specific proteins with a resultant loss of cyclin E/CDK2 kinase activity.  相似文献   

19.
20.
p53-mediated increase in cyclin-dependent kinase inhibitor p21(WAF1) protein is thought to be the major mediator of cell cycle arrest after DNA damage. Previously p21 protein levels have been reported to increase or to decrease after UV irradiation. We show that p21 protein is degraded after irradiation of a variety of cell types with low but not high doses of UV. Cell cycle arrest occurs despite p21 degradation via Tyr(15) inhibitory phosphorylation of cdk2 and differs from the classical p21-dependent checkpoint elicited by ionizing radiation. In contrast to the basal turnover of p21, degradation of p21 switches to ubiquitin/Skp2-dependent proteasome pathway following UV irradiation. ATR activation after UV irradiation is essential for signaling p21 degradation. Finally, UV-induced p21 degradation is essential for optimal DNA repair. These results provide novel insight into regulation of p21 protein and its role in the cellular response to DNA damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号