首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Breast cancer is the most common malignancy in women continuing to rise worldwide. Breast cancer emerges through a multi-step process, encompassing progressive changes from a normal cell to hyperplasia (with and without atypia), carcinoma in situ, invasive carcinoma, and metastasis. In the current study, we analyzed the morphological changes and alterations of DNA methylation, histone methylation and microRNA expression during estradiol-17β (E2)-induced mammary carcinogenesis in female August Copenhagen Irish (ACI) rats. E2-induced breast carcinogenesis in ACI rats provides a physiologically relevant and genetically defined animal model for studying human sporadic breast cancer. The pattern of morphological changes in mammary glands during E2-induced carcinogenesis was characterized by transition from normal appearing alveolar and ductular hyperplasia to focal hyperplastic areas of atypical glands and ducts accompanied by a rapid and sustained loss of global DNA methylation, LINE-1 hypomethylation, loss of histone H3 lysine 9 and histone H4 lysine 20 trimethylation, and altered microRNAs expression. More importantly, these alterations in the mammary tissue occurred after 6 weeks of E2-treatment, whereas the atypical hyperplasia, which represents a putative precursor lesion to mammary carcinoma in this model, was detected only after 12 weeks of exposure, demonstrating clearly that these events are directly associated with the effects of E2 and are not a consequence of the preexisting preneoplastic lesions. The results of this study show that deregulation of cellular epigenetic processes plays a crucial role in the mechanism of E2-induced mammary carcinogenesis in ACI rats, especially in the tumor initiation process.  相似文献   

2.
High fetal/early postnatal levels of estrogen increase breast cancer risk, but the mechanisms remain unknown. Growth factors, such as transforming growth factor α (TGFα), may participate as secondary modifiers in this process. We characterized a modulatory role of early postnatal exposure to 17β-estradiol (E2) on the developing mammary gland morphology by treating intact female CD-1 mice with physiological doses of E2 (2–4 μg), human recombinant TGFα (4 μg), or an estrogen receptor (ER) antagonist ICI 182,780 (20 μg) during postnatal days 1–3. Early postnatal exposure of E2 stimulated mammary ductal growth by days 25 and 35, but by day 50 this was inhibited. The level of differentiation from terminal end buds (TEBs) to the lobulo-alveolar units (LAUs) also was reduced by day 50. The number of TEBs was increased throughout most of the development in the female mice exposed to E2 during early life. An exposure to TGFα or ICI 182,780 between postnatal days 1 and 3 stimulated ductal growth, formation of TEBs, and the differentiation of mammary epithelial structures. ICI 182,80 treatment also caused hyperplastic lobular-like structures in 54-day-old females. Thus, neonatal exposure to TGFα and ICI 182,780 induced both similar (increase in TEBs) and different (increase/decrease in lobulo-alveolar differentiation) developmental changes in the mouse mammary gland, when compared with an exposure to E2. A unique feature of the postnatal E2 treatment was that it inhibited ductal migration by days 50–54. Our data suggest than an exposure to E2 on postnatal days 1–3, possibly combined with secondary epigenetic alterations, leads to various changes within the developing mammary tree. These changes may be potential prerequisites for mammary tumorigenesis. J. Cell. Physiol. 170:279–289, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

3.
4.
JN Treas  T Tyagi  KP Singh 《PloS one》2012,7(8):e43880
Chronic exposures to arsenic and estrogen are known risk factors for prostate cancer. Though the evidence suggests that exposure to arsenic or estrogens can disrupt normal DNA methylation patterns and histone modifications, the mechanisms by which these chemicals induce epigenetic changes are not fully understood. Moreover, the epigenetic effects of co-exposure to these two chemicals are not known. Therefore, the objective of this study was to evaluate the effects of chronic exposure to arsenic and estrogen, both alone and in combination, on the expression of epigenetic regulatory genes, their consequences on DNA methylation, and histone modifications. Human prostate epithelial cells, RWPE-1, chronically exposed to arsenic and estrogen alone and in combination were used for analysis of epigenetic regulatory genes expression, global DNA methylation changes, and histone modifications at protein level. The result of this study revealed that exposure to arsenic, estrogen, and their combination alters the expression of epigenetic regulatory genes and changes global DNA methylation and histone modification patterns in RWPE-1 cells. These changes were significantly greater in arsenic and estrogen combination treated group than individually treated group. The findings of this study will help explain the epigenetic mechanism of arsenic- and/or estrogen-induced prostate carcinogenesis.  相似文献   

5.
There are numerous diseases associated with abnormal hormonal regulation and these include cancers of the breast and prostate. There is substantial evidence that early hormonal perturbations (in utero or during early development) are associated with increased disease susceptibility later in life. These perturbations may arise from exposure to environmental agents or endocrine disruptors which mimic hormones and disrupt normal hormonal signaling. Epigenetic alterations have often been proposed as the underlying mechanism by which early hormonal perturbations may give rise to disease in adulthood. Currently, there is minimal evidence to support a direct link between early hormonal perturbations and epigenetic modifications; or between epigenetic alterations and subsequent onset of cancer. Given that epigenetic modifications may play an important role in hormone-dependent cancers, it is essential to better understand the relationship between the hormonal environment and epigenetic modifications in both normal and disease states. In this review, we highlight several important studies which support the hypothesis that: hormonal perturbations early in life may result in epigenetic changes that may modify hormone receptor function, thereby contributing to an increased risk of developing hormone-related cancers.  相似文献   

6.
In the carcinogenic process, promotion is the process whereby an initiated tissue develops focal proliferations which act as proximate precursors. The evidence obtained from the immunocytochemical staining by monoclonal anti-receptor antibodies indicates that the early steps (atypical hyperplasias) in the carcinogenic process of the breast show an increased and homogeneous expression of the estrogen receptor. These observations suggest that the persistent sensitivity to estrogen may be critical in sustaining the growth of mammary preneoplastic changes and their progression to ultimate precursors and to invasive cancer.  相似文献   

7.
Epigenetic programs have been extensively studied in embryonic stem cells. However, epigenetic controls in mammary gland development and in the differentiation of mammary epithelial stem cells have not been defined.The role of epigenetic programs, including DNA methylation, chromatin (histone) modification, and noncoding RNAs, in cellular differentiation and tumorigenesis is well established and, with recent technological improvements, increasingly well understood at the molecular level. Increasing evidence also implicates epigenetic alterations in mediating the long-term effects of environmental risk factors such as diet, exposure to allergens, and various chemicals in various human diseases, including cancer, asthma, and mental disorders (Heijmans et al. 2009; Feinberg 2010). DNA and histone modification patterns have been the most extensively studied in embryonic stem cells (ESCs) (Mikkelsen et al. 2007; Meissner et al. 2008; Lister et al. 2009), whereas the roles of epigenetic changes in mammary gland development and in the differentiation of mammary epithelial stem cells have not been analyzed in either humans or laboratory animals.Huang and Esteller (2011) provide an overview of epigenetic modifications and the technologies developed for their characterization and profiling studies performed in normal mammary epithelial cells and breast cancer. The role of epigenetic programs in regulating human mammary epithelial cell differentiation has not been defined, largely owing to difficulties and controversies associated with the purification and functional characterization of various progenitor and differentiated cells. As discussed by Borowsky (2011) and Visvader and Smith (2011), currently there is no consensus on the identity of bipotential human mammary epithelial stem cells and luminal and myoepithelial progenitors. Further hampering progress in this area are the lack of technologies suitable for the characterization of genome-wide DNA methylation and histone modification profiles of small numbers of cells that can be recovered from tissue samples. Advances in single-molecule sequencing platforms and their application to epigenetic studies will likely solve this problem as methods allowing genome-wide gene expression, DNA methylation, and histone methylation profiling of minute cell numbers have recently been described (Adli et al. 2010; Gu et al. 2010; Ozsolak et al. 2010). The lack of defined human mammary epithelial stem cell hierarchy also makes the interpretation of epigenetic alterations identified in breast cancer problematic, owing to uncertainties about what normal cell to use for comparison. This is especially problematic when using bulk tissue samples, which is the case in the majority of published studies. Numerous genes have been identified as being epigenetically altered in breast cancer and some of these are likely to reflect true malignancy-associated events, but many events may just reflect cell-type-specific differences between normal and cancer tissues. Although this issue does not influence the use of these markers for cancer diagnosis and prognostication, it complicates attempts to understand their potential role in tumorigenesis.One of the most exciting areas of investigation is the role of epigenetic alterations in the long-term effects of various life events on breast cancer risk. For example, in utero exposure to chemicals such as bisphenols (BPA) may increase breast cancer risk by inducing epigenetic alterations in mammary epithelial stem and progenitor cells. Similarly, the reduced risk of postmenopausal breast cancer associated with full-term pregnancy in young adulthood may also be explained by epigenetic alterations in stem cells. The development of new technologies and improved understanding of human mammary epithelial cell types will assure rapid progress in these areas.Finally, the most important question is how we can use the knowledge we have gained for the prevention and treatment of breast cancer. Drug discovery efforts aimed at the identification of inhibitors of specific DNA- (and histone) modifying enzymes will likely lead to the discovery of clinically useful agents. The number of studies published on these topics in the past few years and the number of pharmaceutical companies pursuing epigenetic targets guarantee that progress in these areas will be made soon.  相似文献   

8.
Through the classic study of genetics, much has been learned about the regulation and progression of human disease. Specifically, cancer has been defined as a disease driven by genetic alterations, including mutations in tumor-suppressor genes and oncogenes, as well as chromosomal abnormalities. However, the study of normal human development has identified that in addition to classical genetics, regulation of gene expression is also modified by ‘epigenetic’ alterations including chromatin remodeling and histone variants, DNA methylation, the regulation of polycomb group proteins, and the epigenetic function of non-coding RNA. These changes are modifications inherited during both meiosis and mitosis, yet they do not result in alterations of the actual DNA sequence. A number of biological questions are directly influenced by epigenetics, such as how does a cell know when to divide, differentiate or remain quiescent, and more importantly, what happens when these pathways become altered? Do these alterations lead to the development and/or progression of cancer? This review will focus on summarizing the limited current literature involving epigenetic alterations in the context of human cancer stems cells (CSCs). The extent to which epigenetic changes define cell fate, identity, and phenotype are still under intense investigation, and many questions remain largely unanswered. Before discussing epigenetic gene silencing in CSCs, the different classifications of stem cells and their properties will be introduced. This will be followed by an introduction to the different epigenetic mechanisms. Finally, there will be a discussion of the current knowledge of epigenetic modifications in stem cells, specifically what is known from rodent systems and established cancer cell lines, and how they are leading us to understand human stem cells.  相似文献   

9.
This study investigated the effect of sex steroids and tamoxifen on primate mammary epithelial proliferation and steroid receptor gene expression. Ovariectomized rhesus monkeys were treated with placebo, 17beta estradiol (E2) alone or in combination with progesterone (E2/P) or testosterone (E2/T), or tamoxifen for 3 days. E2 alone increased mammary epithelial proliferation by approximately sixfold (P:<0.0001) and increased mammary epithelial estrogen receptor (ERalpha) mRNA expression by approximately 50% (P:<0.0001; ERbeta mRNA was not detected in the primate mammary gland). Progesterone did not alter E2's proliferative effects, but testosterone reduced E2-induced proliferation by approximately 40% (P:<0.002) and entirely abolished E2-induced augmentation of ERalpha expression. Tamoxifen had a significant agonist effect in the ovariectomized monkey, producing a approximately threefold increase in mammary epithelial proliferation (P:<0.01), but tamoxifen also reduced ERalpha expression below placebo level. Androgen receptor (AR) mRNA was detected in mammary epithelium by in situ hybridization. AR mRNA levels were not altered by E2 alone but were significantly reduced by E2/T and tamoxifen treatment. Because combined E2/T and tamoxifen had similar effects on mammary epithelium, we investigated the regulation of known sex steroid-responsive mRNAs in the primate mammary epithelium. E2 alone had no effect on apolipoprotein D (ApoD) or IGF binding protein 5 (IGFBP5) expression, but E2/T and tamoxifen treatment groups both demonstrated identical alterations in these mRNAs (ApoD was decreased and IGFBP5 was increased). These observations showing androgen-induced down-regulation of mammary epithelial proliferation and ER expression suggest that combined estrogen/androgen hormone replacement therapy might reduce the risk of breast cancer associated with estrogen replacement. In addition, these novel findings on tamoxifen's androgen-like effects on primate mammary epithelial sex steroid receptor expression suggest that tamoxifen's protective action on mammary gland may involve androgenic effects.  相似文献   

10.
Epidemiological data indicate that human cancer risk is significantly reduced by the consumption of soy‐based foods containing the “phytoestrogen” genistein, which can signal via host cell estrogen receptors. While additional chemoprotective effects of genistein induced by epigenetic factors have also been reported, the key molecules and mechanisms involved are poorly defined. We therefore investigated genistein effects on chromatin‐bound proteins in the estrogen receptor‐deficient cell line MDA‐MB‐231 which is insensitive to phytoestrogen signaling. After exposure to low‐dose genistein for >1 month, MDA‐MB‐231 cells exhibited stable epigenetic alterations that are analyzed via partial MNase digestion and TMT‐based quantitative proteomics. 3177 chromatin‐bound proteins are identified with high confidence, including 882 molecules that displayed altered binding topology after cell conditioning with genistein. Prolonged phytochemical exposure conferred heritable changes in the binding topology of key epigenetic regulators including ATRX, SUV39H1/H2, and HP1BP3 that are preserved in untreated progeny, resulting in sustained downregulation of proliferation genes and reduced cell growth. These data indicate that soy derivative genistein exerts complex estrogen receptor‐independent effects on the epigenome likely to influence tumorigenesis by restricting cell growth.  相似文献   

11.
Prostate cancer is the most frequent non-cutaneous malignancy in men. There is strong evidence in rodents that neonatal estrogen exposure plays a role in the development of this disease. However, there is little information regarding the effects of estrogen in human fetal prostate tissue. This study explored early life estrogen exposure, with and without a secondary estrogen and testosterone treatment in a human fetal prostate xenograft model. Histopathological lesions, proliferation, and serum hormone levels were evaluated at 7, 30, 90, and 200-day time-points after xenografting. The expression of 40 key genes involved in prostatic glandular and stromal growth, cell-cycle progression, apoptosis, hormone receptors and tumor suppressors was evaluated using a custom PCR array. Epigenome-wide analysis of DNA methylation was performed on whole tissue, and laser capture-microdissection (LCM) isolated epithelial and stromal compartments of 200-day prostate xenografts. Combined initial plus secondary estrogenic exposures had the most severe tissue changes as revealed by the presence of hyperplastic glands at day 200. Gene expression changes corresponded with the cellular events in the KEGG prostate cancer pathway, indicating that initial plus secondary exposure to estrogen altered the PI3K-Akt signaling pathway, ultimately resulting in apoptosis inhibition and an increase in cell cycle progression. DNA methylation revealed that differentially methylated CpG sites significantly predominate in the stromal compartment as a result of estrogen-treatment, thereby providing new targets for future investigation. By using human fetal prostate tissue and eliminating the need for species extrapolation, this study provides novel insights into the gene expression and epigenetic effects related to prostate carcinogenesis following early life estrogen exposure.  相似文献   

12.
《Epigenetics》2013,8(2):107-112
Cancer epigenetics research is now entering an exciting phase of translational epigenetics whereby novel epigenome therapeutics is being developed for application in clinical settings. Epigenetics refers to all heritable and potentially reversible changes in gene or genome functioning that occurs without altering the nucleotide sequence of the DNA. A range of different epigenetic “marks” can activate or repress gene expression. While epigenetic alterations are associated with most cancers, epigenetic dysregulation can also have a causal role in cancer etiology. Epigenetically disrupted stem or progenitor cells could have an early role in neoplastic transformations, while perturbance of epigenetic regulatory mechanisms controlling gene expression in cancer-relevant pathways will also be a contribution factor. The reversibility of epigenetic marks provides the possibility that the activity of key cancer genes and pathways can be regulated as a therapeutic approach. The growing availability of a range of chemical agents which can affect epigenome functioning has led to a range of epigenetic-therapeutic approaches for cancer and intense interest in the development of second-generation epigenetic drugs (epi-drugs) which would have greater specificity and efficacy in clinical settings. The latest developments in this exciting arena of translational cancer epigenetics were presented at a recent conference on “Epigenetics and New Therapies in Cancer” at the Spanish National Cancer Research Center (CNIO), Spain.  相似文献   

13.
The establishment of sex-specific neural morphology, which underlies sex-specific behaviors, occurs during a perinatal sensitive window in which brief exposure to gonadal steroid hormones produces permanent masculinization of the brain. In the rodent, estradiol derived from testicular androgens is a principal organizational hormone. The mechanism by which transient estradiol exposure induces permanent differences in neuronal anatomy has been widely investigated, but remains elusive. Epigenetic changes, such as DNA methylation, allow environmental influences to alter long-term gene expression patterns and therefore may be a potential mediator of estradiol-induced organization of the neonatal brain. Here we review data that demonstrate sex and estradiol-induced differences in DNA methylation on the estrogen receptor α (ERα), estrogen receptor β (ERβ), and progesterone receptor (PR) promoters in sexually dimorphic brain regions across development. Contrary to the overarching view of DNA methylation as a permanent modification directly tied to gene expression, these data demonstrate that methylation patterns on steroid hormone receptors change across the life span and do not necessarily predict expression. Although further exploration into the mechanism and significance of estradiol-induced alterations in DNA methylation patterns in the neonatal brain is necessary, these results provide preliminary evidence that epigenetic alterations can occur in response to early hormone exposure and may mediate estradiol-induced organization of sex differences in the neonatal brain.  相似文献   

14.
15.
Endocrine-active chemicals alter or mimic physiological hormones. These compounds are reported to originate from a wide variety of sources, and recent studies have shown widespread human exposure to several of these compounds. Given the role of the sex steroid hormone, estradiol, in human breast cancer causation, endocrine-active chemicals which interfere with estrogen signaling constitute one potential factor contributing to the high incidence of breast cancer. Thus, the aim of this review is to examine several common endocrine-active chemicals and their respective roles in breast cancer causation or prevention. The plastic component, bisphenol A (BPA), the synthetic estrogen, diethylstilbestrol (DES), the by-product of organic combustion, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), the soy component, genistein, and the red grape phytoalexin, resveratrol, have some degree of structural similarities to each other and estradiol. However, despite these structural similarities, the in vitro and in vivo properties of each of these chemicals vary greatly in terms of breast cancer causation and prevention. Early life exposure to BPA and DES increases rodent susceptibility to chemically induced mammary carcinogenesis, presumably through retardation of normal mammary gland maturation and/or disrupting the ratio of cell proliferation and apoptosis in the mammary gland. On the other hand, early exposures to genistein and resveratrol protect rodents against chemically induced and spontaneous mammary cancers. This is reported to occur through the ability of genistein and resveratrol to accelerate mammary gland maturation. Interestingly, TCDD, which is the most structurally dissimilar to the above chemicals and functions as an anti-estrogen, also increases chemically induced mammary carcinogenesis through retardation of mammary gland maturation. This article is part of a Special Issue entitled 'Endocrine disruptors'.  相似文献   

16.

In the recent past, huge emphasis has been given to the epigenetic alterations of the genes responsible for the cause of neurological disorders. Earlier, the scientists believed somatic changes and modifications in the genetic makeup of DNA to be the main cause of the neurodegenerative diseases. With the increase in understanding of the neural network and associated diseases, it was observed that alterations in the gene expression were not always originated by the change in the genetic sequence. For this reason, extensive research has been conducted to understand the role of epigenetics in the pathophysiology of several neurological disorders including Alzheimer’s disease, Parkinson’s disease and, Huntington’s disease. In a healthy person, the epigenetic modifications play a crucial role in maintaining the homeostasis of a cell by either up-regulating or down-regulating the genes. Therefore, improved understanding of these modifications may provide better insight about the diseases and may serve as potential therapeutic targets for their treatment. The present review describes various epigenetic modifications involved in the pathology of Parkinson’s Disease (PD) backed by multiple researches carried out to study the gene expression regulation related to the epigenetic alterations. Additionally, we will briefly go through the current scenario about the various treatment therapies including small molecules and multiple phytochemicals potent enough to reverse these alterations and the future directions for a better management of PD.

  相似文献   

17.
A combination of two monoclonal antibodies and high resolution immunocytochemical technique was applied to label estrogen receptors in spontaneous mouse mammary tumors. Protein A-colloidal gold complex was used as an electron opaque marker. With this procedure estrogen receptors were labelled in the nuclei of cancer cells, predominantly over heterochromatin. In the cytoplasm a slight tagging of the rough endoplasmic reticulum was detected, apparently related with the sites of receptor biosynthesis. Other organelles and the mammary tumor viruses (MuMTV) were not stained immunocytochemically. The immunocytochemical procedure applied in this investigation allowed the detection of low levels of estrogen receptors in an estrogen-unresponsive mammary carcinoma. The presence of estrogen receptors with a specific distribution in estrogen-independent tumors suggests the need of a reevaluation of their capacity as indicators of hormone-dependence in mammary carcinomas.  相似文献   

18.
Summary A combination of two monoclonal antibodies and high resolution immunocytochemical technique was applied to label estrogen receptors in spontaneous mouse mammary tumors. Protein A-colloidal gold complex was used as an electron opaque marker. With this procedure estrogen receptors were labelled in the nuclei of cancer cells, predominantly over heterochromatin. In the cytoplasm a slight tagging of the rough endoplasmic reticulum was detected, apparently related with the sites of receptor biosynthesis. Other organelles and the mammary tumor viruses (MuMTV) were not stained immunocytochemically.The immunocytochemical procedure applied in this investigation allowed the detection of low levels of estrogen receptors in an estrogen-unresponsive mammary carcinoma. The presence of estrogen receptors with a specific distribution in estrogen-independent tumors suggests the need of a reevaluation of their capacity as indicators of hormone-dependence in mammary carcinomas.  相似文献   

19.
MicroRNA (miRNA) alterations in response to changes in an extracellular microenvironment have been observed and considered as one of the major mechanisms for epigenetic modifications of the cell. While enormous efforts have been made in the understanding of the role of miRNAs in regulating cellular responses to the microenvironment, the mechanistic insight into how extracellular signals can be transduced into miRNA alterations in cells is still lacking. Interestingly, recent studies have shown that ion channels/transporters, which are known to conduct or transport ions across the cell membrane, also exhibit changes in levels of expression and activities in response to changes of extracellular microenvironment. More importantly, alterations in expression and function of ion channels/transporters have been shown to result in changes in miRNAs that are known to change in response to alteration of the microenvironment. In this review, we aim to summarize the recent data demonstrating the ability of ion channels/transporters to transduce extracellular signals into miRNA changes and propose a potential link between cells and their microenvironment through ion channels/transporters. At the same time, we hope to provide new insights into epigenetic regulatory mechanisms underlying a number of physiological and pathological processes, including embryo development and cancer metastasis.  相似文献   

20.
Epigenetic association studies have demonstrated differential promoter methylation in the core circadian genes in breast cancer cases relative to cancer-free controls. The current pilot study aims to investigate whether epigenetic changes affecting breast cancer risk could be caused by circadian disruption through exposure to light at night. Archived DNA samples extracted from whole blood of 117 female subjects from a prospective cohort conducted in Denmark were included in this study. A polymerase chain reaction (PCR)-based method was used for detection of gene-promoter methylation, whereas genome-wide methylation analysis was performed using the Illumina Infinium Methylation Chip. Long-term shiftwork resulted in the same promoter hypomethylation of CLOCK and hypermethylation of CRY2, as was previously observed in breast cancer case-control studies. Genome-wide methylation analysis further discovered widespread methylation alterations in shiftworkers, including changes in many methylation- and cancer-relevant genes. Pathway analysis of the genes with altered methylation patterns revealed several cancer-related pathways. One of the top three networks generated was designated as "DNA replication, recombination, and repair, gene expression, behavior" with ESR1 (estrogen receptor α) featured most prominently in the network, underscoring the potential breast cancer relevance of the genes differentially methylated in long-term shiftworkers. These results, although exploratory, demonstrate the first evidence of the cancer-relevant epigenetic effects of night shiftwork, which warrant further investigation. Considering there are millions of shiftworkers worldwide, understanding the effects of this exposure may lead to novel strategies for cancer prevention and new policies regulating shiftwork.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号